We investigate the scaling behavior for roughening and coarsening of mounds during unstable epitaxial growth. By using kinetic Monte Carlo (KMC) simulations of two lattice-gas models of crystal surfaces, we find scaling exponents that characterize roughening and coarsening at long times. Our simulation data show that these exponents have a complicated dependence on key model parameters that describe a step edge barrier and downward transport mechanisms.
View Article and Find Full Text PDFBy linking atomistic and mesoscopic scales, we formally show how a local steric effect can hinder crystal growth and lead to a buildup of adsorbed atoms (adatoms) on a supersaturated, (1+1)-dimensional surface. Starting from a many-adatom master equation of a kinetic restricted solid-on-solid (KRSOS) model with we heuristically extract a coarse-grained, mesoscale description that defines the motion of a line defect (i.e.
View Article and Find Full Text PDFWe describe the effect of kinetic interactions of adsorbed atoms in a mesoscale model of epitaxial growth without elasticity. Our goal is to understand how atomic correlations due to kinetics leave their signature in mechanisms governing the motion of crystal line defects (steps) at the nanoscale. We focus on the key atomistic processes related to external material deposition, desorption, and asymmetric energy barriers on a stepped surface.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2014
Below the roughening transition, crystal surfaces have macroscopic plateaus, facets, whose evolution is driven by the microscale dynamics of steps. A long-standing puzzle was how to reconcile discrete effects in facet motion with fully continuum approaches. We propose a resolution of this issue via connecting, through a jump condition, the continuum-scale surface chemical potential away from the facet, characterized by variations of the continuum surface free energy, with a chemical potential originating from the decay of atomic steps on top of the facet.
View Article and Find Full Text PDF