: Current neuronal imaging methods mostly use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers.: Our developed 'CIS-NAIST' device integrates a micro-CMOS image sensor, thin-film fluorescence filter, micro-LEDs, and a needle-shaped flexible printed circuit.
View Article and Find Full Text PDFIn this research, we combined our ultralight micro-imaging device for calcium imaging with microdialysis to simultaneously visualize neural activity in the dorsal raphe nucleus (DRN) and measure serotonin release in the central nucleus of the amygdala (CeA) and the anterior cingulate cortex (ACC). Using this platform, we observed brain activity following nociception induced by formalin injection in the mouse's hind paw. Our device showed that DRN fluorescence intensity increased after formalin injection, and the increase was highly correlated with the elevation in serotonin release in both the CeA and ACC.
View Article and Find Full Text PDFCertain bacteria possess the ability to reduce anxiety- and stress-related behaviors through the gut microbiome-brain axis. Such bacteria are called psychobiotics, and can be used to improve mood and cognition. However, only a few bacteria have been characterized as psychobiotics, and their exact mechanism of action remains unclear.
View Article and Find Full Text PDFEstablishing toxicological predictive modeling frameworks for heterogeneous nanomaterials is crucial for rapid environmental and health risk assessment. However, existing structure-toxicity correlation models for such nanomaterials are only based on simple linear regression algorithms that are prone to underfitting the training data. These models rely heavily on experimental and expensive computational quantum mechanical descriptors, which significantly limit their practical use.
View Article and Find Full Text PDFSignificance: Gene expression analysis is an important fundamental area of biomedical research. However, live gene expression imaging has proven challenging due to constraints in conventional optical devices and fluorescent reporters.
Aim: Our aim is to develop smaller, more cost-effective, and versatile imaging capabilities compared with conventional devices.
Fluorescence imaging devices have been indispensable in elucidating the workings of the brain in living animals, including unrestrained, active ones. Various devices are available, each with their own strengths and weaknesses in terms of many factors. We have developed CMOS-based needle-type imaging devices that are small and lightweight enough to be doubly implanted in freely moving mice.
View Article and Find Full Text PDF