The impact of grain yield on post-silking N uptake (PostN) in maize has been a major focus of previous studies, although results are mixed as to the direction and magnitude of the relationship between these two variables. The objective of this study was to understand how grain yield and other plant traits interact with exogenous N and water availability to regulate PostN in maize. In a greenhouse experiment, maize was subjected to high or low levels of N and water supply pre-silking during vegetative growth, which created large variations in source and sink components such as ear size and leaf area.
View Article and Find Full Text PDFDuring vegetative growth maize can accumulate luxury nitrogen (N) in excess of what is required for biomass accumulation. When post-silking N uptake is restricted, this luxury N may mitigate N stress by acting as an N reserve that buffers grain yield and maintains plant function. The objective of this study was to determine if and how luxury accumulation of N prior to silking can buffer yield against post-silking N and/or water stress in maize.
View Article and Find Full Text PDFUnderstanding crop resilience to environmental stress is critical in predicting the consequences of global climate change for agricultural systems worldwide, but to date studies addressing crop resiliency have focused primarily on plant physiological and molecular responses. Arbuscular mycorrhizal fungi (AMF) form mutualisms with many crop species, and these relationships are key in mitigating the effects of abiotic stress in many agricultural systems. However, to date there is little research examining whether (1) fungal community structure in agroecosystems is resistant to changing environmental conditions, specifically water limitation and (2) resilience of fungal community structure is moderated by agricultural management systems, namely the integration of trees into cropping systems.
View Article and Find Full Text PDF