Publications by authors named "Joshua N Curry"

The kidney plays a major role in maintenance of serum calcium concentration, which must be kept within a narrow range to avoid disruption of numerous physiologic processes that depend critically on the level of extracellular calcium, including cell signaling, bone structure, and muscle and nerve function. This defense of systemic calcium homeostasis comes, however, at the expense of the dumping of calcium into the kidney tissue and urine. Because of the large size and multivalency of the calcium ion, its salts are the least soluble among all the major cations in the body.

View Article and Find Full Text PDF

The proximal renal tubule (PT) is characterized by a highly conductive paracellular pathway, which contributes to a significant amount of solute and water reabsorption by the kidney. Claudins are tight junction proteins that, in part, determine the paracellular permeability of epithelia. In the present study, we determined the expression pattern of the major PT claudins.

View Article and Find Full Text PDF

The major risk factor for kidney stone disease is idiopathic hypercalciuria. Recent evidence implicates a role for defective calcium reabsorption in the renal proximal tubule. We hypothesized that claudin-2, a paracellular cation channel protein, mediates proximal tubule calcium reabsorption.

View Article and Find Full Text PDF

The proximal tubule (PT) is responsible for the majority of calcium reabsorption by the kidney. Most PT calcium transport appears to be passive, although the molecular facilitators have not been well established. Emerging evidence supports a major role for PT calcium transport in idiopathic hypercalciuria and the development of kidney stones.

View Article and Find Full Text PDF

Magnesium is a divalent cation that fills essential roles as regulator and cofactor in a variety of biological pathways, and maintenance of magnesium balance is vital to human health. The kidney, in concert with the intestine, has an important role in maintaining magnesium homeostasis. Although micropuncture and microperfusion studies in the mammalian nephron have shone a light on magnesium handling in the various nephron segments, much of what we know about the protein mediators of magnesium handling in the kidney have come from more recent genetic studies.

View Article and Find Full Text PDF

The cation cotransporters Na(+)-K(+)-2Cl(-) cotransporter 1 and 2 (NKCC1 and NKCC2) and Na(+)-Cl cotransporter (NCC) are phosphorylated and activated by the kinases Ste20-related proline alanine-rich kinase (SPAK) and oxidative stress-responsive kinase (OSR1), and their targeted disruption in mice causes phenotypes resembling the human disorders Bartter syndrome and Gitelman syndrome, reflecting reduced NKCC2 and NCC activity, respectively. We previously cloned a kinase-inactive kidney-specific SPAK isoform, kidney-specific (KS)-SPAK, which lacks the majority of the kinase domain present in full-length SPAK. Another putative inactive SPAK isoform, SPAK2, which only lacks the initial portion of the kinase domain, is also highly expressed in kidney.

View Article and Find Full Text PDF

The sodium chloride cotransporter (NCC) is the primary target of thiazides diuretics, drugs used commonly for long-term hypertension therapy. Thiazides also completely reverse the signs of familial hyperkalemic hypertension (FHHt), suggesting that the primary defect in FHHt is increased NCC activity. To test whether increased NCC abundance alone is sufficient to generate the FHHt phenotype, we generated NCC transgenic mice; surprisingly, these mice did not display an FHHt-like phenotype.

View Article and Find Full Text PDF