Publications by authors named "Joshua Mouland"

Light exposure is a vital regulator of physiology and behavior in humans. However, monitoring of light exposure is not included in current wearable Internet of Things (IoT) devices, and only recently have international standards defined [Formula: see text] -optic equivalent daylight illuminance (EDI) measures for how the eye responds to light. This article reports a wearable light sensor node that can be incorporated into the IoT to provide monitoring of EDI exposure in real-world settings.

View Article and Find Full Text PDF

Intrinsically photosensitive retinal ganglion cells (ipRGCs) integrate melanopsin and rod/cone-mediated inputs to signal to the brain. Whilst originally identified as a cell type specialised for encoding ambient illumination, several lines of evidence indicate a strong association between colour discrimination and ipRGC-driven responses. Thus, cone-mediated colour opponent responses have been widely found across ipRGC target regions in the mouse brain and influence a key ipRGC-dependent function, circadian photoentrainment.

View Article and Find Full Text PDF

Daily changes in ambient illumination act as important time of day cues which are pivotal for aligning internal circadian clocks to external time. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), generally considered specialized for encoding light intensity (irradiance), are critical to this photoentrainment process. However, ipRGCs also convey information from conventional photoreceptor cells, the rods and cones.

View Article and Find Full Text PDF

The discovery of the suprachiasmatic nucleus (SCN) as the master mammalian pacemaker has since opened up a variety of alternative methods for assessing how external timing cues influence the clock. One powerful approach for understanding how sensory inputs influence the SCN is to monitor acute changes in SCN electrophysiological activity via in vivo extracellular recording. This methodology offers the ability to monitor stimulus-evoked changes in SCN function at very fine timescales and to rapidly test multiple stimuli and/or stimulus repeats within a single animal.

View Article and Find Full Text PDF

An animal's temporal niche - the time of day at which it is active - is known to drive a variety of adaptations in the visual system. These include variations in the topography, spectral sensitivity and density of retinal photoreceptors, and changes in the eye's gross anatomy and spectral transmission characteristics. We have characterised visual spectral sensitivity in the murid rodent (the four-striped grass mouse), which is in the same family as (nocturnal) mice and rats but exhibits a strong diurnal niche.

View Article and Find Full Text PDF

In humans, short-wavelength light evokes larger circadian responses than longer wavelengths [1-3]. This reflects the fact that melanopsin, a key contributor to circadian assessments of light intensity, most efficiently captures photons around 480 nm [4-8] and gives rise to the popular view that "blue" light exerts the strongest effects on the clock. However, in the natural world, there is often no direct correlation between perceived color (as reported by the cone-based visual system) and melanopsin excitation.

View Article and Find Full Text PDF

The suprachiasmatic nuclei (SCN), the site of the mammalian circadian (daily) pacemaker, contains thousands of interconnected neurons, some of which receive direct retinal input. Here, we study the fast (<1 s) responses of SCN neurons to visual stimuli with a large-scale mathematical model tracking the ionic currents and voltage of all SCN neurons. We reconstruct the SCN network connectivity and reject 99.

View Article and Find Full Text PDF

A direct retinal projection targets the suprachiasmatic nucleus (SCN) (an important hypothalamic control center). The accepted function of this projection is to convey information about ambient light (irradiance) to synchronize the SCN's endogenous circadian clock with local time and drive the diurnal variations in physiology and behavior [1-4]. Here, we report that it also renders the SCN responsive to visual images.

View Article and Find Full Text PDF