Publications by authors named "Joshua Mares"

Background: Paraplegia remains a devastating complication of thoracoabdominal aortic intervention. Metabolic stress induces expression of beta common receptor subunit of erythropoietin (EPO) receptor (βcR) to exert a neuroprotective effect in spinal cord ischemia reperfusion injury (SCIR). Diazoxide (DZ) has been shown to induce ischemic tolerance.

View Article and Find Full Text PDF

Background: Paraplegia remains the most feared complication of complex thoracoabdominal aortic intervention. Although erythropoietin (EPO) has demonstrated neuroprotective effects in spinal cord ischemia, it does not work until expression of the beta common receptor subunit of the EPO receptor (βcR) is induced by ischemia. We hypothesized that the βcR can be induced by diazoxide (DZ), amplifying the neuroprotective effects of EPO in spinal cord ischemia-reperfusion injury.

View Article and Find Full Text PDF

Background: Paraplegia from spinal cord ischemia-reperfusion (SCIR) remains an elusive and devastating complication of complex aortic operations. Erythropoietin (EPO) attenuates this injury in models of SCIR. Upregulation of the EPO beta common receptor (βcR) is associated with reduced damage in models of neural injury.

View Article and Find Full Text PDF

Paraplegia following complex aortic intervention relies on crude evaluation of lower extremity strength such as whether the patient can lift their legs or flex the ankle. Little attention has been given to the possible long-term neurologic sequelae following these procedures in patients appearing functionally normal. We hypothesize that mice subjected to minimal ischemic time will have functional and histological changes despite the gross appearance of normal function.

View Article and Find Full Text PDF

Background: Paraplegia remains a devastating complication of aortic surgery, occurring in up to 20% of complex thoracoabdominal repairs. Erythropoietin (EPO) attenuates this injury in models of spinal cord ischemia. Upregulation of the beta-common receptor (βcR) subunit of the EPO receptor is associated with reduced damage in murine models of neural injury.

View Article and Find Full Text PDF

Background: Paraplegia secondary to spinal cord ischemia-reperfusion injury remains a devastating complication of thoracoabdominal aortic intervention. The complex interactions between injured neurons and activated leukocytes have limited the understanding of neuron-specific injury. We hypothesize that spinal cord neuron cell cultures subjected to oxygen-glucose deprivation (OGD) would simulate ischemia-reperfusion injury, which could be attenuated by specific alpha-2a agonism in an Akt-dependent fashion.

View Article and Find Full Text PDF

Objective: Paraplegia remains a devastating complication of complex aortic surgery. Erythropoietin (EPO) has been shown to prevent paraplegia after ischemia reperfusion, but the protective mechanism remains poorly described in the spinal cord. We hypothesized that EPO induces the CREB (cAMP [adenosine 3'5' cyclic monophosphate] response element-binding protein) pathway and neurotrophin production in the murine spinal cord, attenuating functional and cellular injury.

View Article and Find Full Text PDF

Objectives: Delayed paraplegia secondary to ischemia-reperfusion injury is a devastating complication of thoracoabdominal aortic surgery. Alpha-2 agonists have been shown to attenuate ischemia-reperfusion injury, but the mechanism for protection has yet to be elucidated. A growing body of evidence suggests that astrocytes play a critical role in neuroprotection by release of neurotrophins.

View Article and Find Full Text PDF

Background: Lower extremity paralysis continues to complicate aortic interventions. The lack of understanding of the underlying pathology has hindered advancements to decrease the occurrence this injury. The current model demonstrates reproducible lower extremity paralysis following thoracic aortic occlusion.

View Article and Find Full Text PDF

Background: Despite investigation into preventable pharmacologic adjuncts, paraplegia continues to complicate thoracoabdominal aortic interventions. The alpha 2a adrenergic receptor agonist, dexmedetomidine, has been shown to preserve neurologic function and neuronal viability in a murine model of spinal cord ischemia reperfusion, although the mechanism remains elusive. We hypothesize that dexmedetomidine will blunt postischemic inflammation in vivo following thoracic aortic occlusion with in vitro demonstration of microglial inhibition following lipopolysaccharide (LPS) stimulation.

View Article and Find Full Text PDF