Publications by authors named "Joshua M DiNapoli"

Article Synopsis
  • The study focuses on how antibodies are characterized using B cells and highlights the challenges with analyzing plasma cells due to their lack of surface B cell receptors (BCRs).
  • Researchers explored the antibody repertoires from bone marrow and spleen in a mouse model, overcoming technical limitations to include plasma cells in their analysis.
  • Results showed that spleen B cells produced higher affinity antibodies than bone marrow plasma cells, with evidence of shared origins for some antibody clones between the two lymphoid tissues.
View Article and Find Full Text PDF

Human metapneumovirus (hMPV) is a major cause of acute respiratory infections in infants and older adults, for which no vaccines or therapeutics are available. The viral fusion (F) glycoprotein is required for entry and is the primary target of neutralizing antibodies; however, little is known about the humoral immune response generated from natural infection. Here, using prefusion-stabilized F proteins to interrogate memory B cells from two older adults, we obtain over 700 paired non-IgM antibody sequences representing 563 clonotypes, indicative of a highly polyclonal response.

View Article and Find Full Text PDF

We subjected various open reading frames (ORFs) in the genome of respiratory syncytial virus (RSV) to codon pair optimization (CPO) by increasing the content of codon pairs that are overrepresented in the human genome without changing overall codon usage and amino acid sequences. CPO has the potential to increase the expression of the encoded protein(s). Four viruses were made: Max A (with CPO of NS1, NS2, N, P, M, and SH ORFs), Max B (with CPO of G and F), Max L (with CPO of L), and Max FLC (with CPO of all ORFs except M2-1 and M2-2).

View Article and Find Full Text PDF

Recoding viral genomes by numerous synonymous but suboptimal substitutions provides live attenuated vaccine candidates. These vaccine candidates should have a low risk of deattenuation because of the many changes involved. However, their genetic stability under selective pressure is largely unknown.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the principal cause of bronchiolitis in infants and a significant healthcare problem. The RSV Glycoprotein (G) mediates attachment of the virus to the cell membrane, which facilitates interaction of the RSV Fusion (F) protein with nucleolin, thereby triggering fusion of the viral and cellular membranes. However, a host protein ligand for G has not yet been identified.

View Article and Find Full Text PDF

Human respiratory syncytial virus (RSV) is the most important viral agent of serious pediatric respiratory-tract disease worldwide. A vaccine or generally effective antiviral drug is not yet available. We designed new live attenuated RSV vaccine candidates by codon-pair deoptimization (CPD).

View Article and Find Full Text PDF

Herpes simplex virus type 2 (HSV-2) is a sexually transmitted virus that is highly prevalent worldwide, causing a range of symptoms that result in significant healthcare costs and human suffering. ACAM529 is a replication-defective vaccine candidate prepared by growing the previously described dl5-29 on a cell line appropriate for GMP manufacturing. This vaccine, when administered subcutaneously, was previously shown to protect mice from a lethal vaginal HSV-2 challenge and to afford better protection than adjuvanted glycoprotein D (gD) in guinea pigs.

View Article and Find Full Text PDF

We previously developed a respiratory tract vaccine candidate against Ebola virus (EBOV) based on human parainfluenza virus type 3 (HPIV3), a respiratory paramyxovirus, expressing the EBOV GP envelope protein (HPIV3/GP) from an added gene. Two doses of this vaccine candidate delivered by the intranasal and intratracheal route protected monkeys against intraperitoneal challenge with EBOV; however, concerns exist that the vaccine candidate may have reduced immunogenicity in the adult human population due to pre-existing immunity against HPIV3. Here we developed a new vaccine candidate (NDV/GP) based on Newcastle disease virus (NDV), an avian paramyxovirus that is antigenically distinct from human viral pathogens and is highly attenuated in monkeys.

View Article and Find Full Text PDF

We previously used human parainfluenza virus type 3 (HPIV3) as a vector to express the Ebola virus (EBOV) GP glycoprotein. The resulting HPIV3/EboGP vaccine was immunogenic and protective against EBOV challenge in a non-human primate model. However, it remained unclear whether the vaccine would be effective in adults due to preexisting immunity to HPIV3.

View Article and Find Full Text PDF

Highly pathogenic avian influenza virus (HPAIV) subtype H5N1 causes severe disease and mortality in poultry. Increased transmission of H5N1 HPAIV from birds to humans is a serious threat to public health. We evaluated the individual contributions of each of the three HPAIV surface proteins, namely, the hemagglutinin (HA), the neuraminidase (NA), and the M2 proteins, to the induction of HPAIV-neutralizing serum antibodies and protective immunity in chickens.

View Article and Find Full Text PDF

H5N1 highly pathogenic avian influenza virus (HPAIV) causes periodic outbreaks in humans, resulting in severe infections with a high (60%) incidence of mortality. The circulating strains have low human-to-human transmissibility; however, widespread concerns exist that enhanced transmission due to mutations could lead to a global pandemic. We previously engineered Newcastle disease virus (NDV), an avian paramyxovirus, as a vector to express the HPAIV hemagglutinin (HA) protein, and we showed that this vaccine (NDV/HA) induced a high level of HPAIV-specific mucosal and serum antibodies in primates when administered through the respiratory tract.

View Article and Find Full Text PDF

Newcastle disease virus (NDV), an avian virus, is being evaluated for the development of vectored human vaccines against emerging pathogens. Previous studies of NDV-vectored vaccines in a mouse model suggested their potency after delivery by injection or by the intranasal route. We compared the efficacy of various routes of delivery of NDV-vectored vaccines in a non-human primate model.

View Article and Find Full Text PDF

Background: A subset of the virus-specific CD8+ cytotoxic T lymphocytes (CTL) isolated from the lungs of mice infected with human respiratory syncytial virus (RSV) is impaired in the ability to secrete interferon gamma (IFNgamma), a measure of functionality. It was suggested that the impairment specifically suppressed the host cellular immune response, a finding that could help explain the ability of RSV to re-infect throughout life.

Results: To determine whether this effect is dependent on the virus, the route of infection, or the type of infection (respiratory, disseminated, or localized dermal), we compared the CTL responses in mice following intranasal (IN) infection with RSV or influenza virus or IN or intradermal (ID) infection with vaccinia virus expressing an RSV CTL antigen.

View Article and Find Full Text PDF

The ongoing outbreak of highly pathogenic avian influenza virus (HPAIV) in birds, the incidence of transmission to humans with a resulting high mortality rate, and the possibility of a human pandemic warrant the development of effective human vaccines against HPAIV. We developed an experimental live-attenuated vaccine for direct inoculation of the respiratory tract based on recombinant avian Newcastle disease virus (NDV) expressing the hemagglutinin (HA) glycoprotein of H5N1 HPAIV (NDV-HA). Expression of the HPAIV HA gene slightly reduced NDV virulence, as evidenced by the increased mean embryo death time and reduced replication in chickens.

View Article and Find Full Text PDF

The international outbreak of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) in 2002-2003 highlighted the need to develop pretested human vaccine vectors that can be used in a rapid response against newly emerging pathogens. We evaluated Newcastle disease virus (NDV), an avian paramyxovirus that is highly attenuated in primates, as a topical respiratory vaccine vector with SARS-CoV as a test pathogen. Complete recombinant NDV was engineered to express the SARS-CoV spike S glycoprotein, the viral neutralization and major protective antigen, from an added transcriptional unit.

View Article and Find Full Text PDF