Basic Clin Pharmacol Toxicol
October 2023
VLGR1/ADGRV1 (very large G protein-coupled receptor-1) is the largest known adhesion G protein-coupled receptor. Mutations in VLGR1/ADGRV1 cause Usher syndrome (USH), the most common form of hereditary deaf-blindness, and have been additionally linked to epilepsy. Although VLGR1/ADGRV1 is almost ubiquitously expressed, little is known about the subcellular function and signalling of the VLGR1 protein and thus about mechanisms underlying the development of diseases.
View Article and Find Full Text PDFVLGR1/ADGRV1 (very large G protein-coupled receptor-1) is the largest adhesion G protein-coupled receptor (aGPCR). Mutations in VLGR1/ADGRV1 are associated with human Usher syndrome, the most common form of deaf-blindness, and also with epilepsy in humans and mice. VLGR1 is expressed almost ubiquitously but is mainly found in the CNS and in the sensory cells of the eye and inner ear.
View Article and Find Full Text PDFFront Cell Dev Biol
February 2023
Human Usher syndrome (USH) is the most common form of hereditary combined deaf-blindness. USH is a complex genetic disorder, and the pathomechanisms underlying the disease are far from being understood, especially in the eye and retina. The gene encodes the scaffold protein harmonin which organizes protein networks due to binary interactions with other proteins, such as all USH proteins.
View Article and Find Full Text PDFUsher syndrome (USH) is the most common form of monogenic deaf-blindness. Loss of vision is untreatable and there are no suitable animal models for testing therapeutic strategies of the ocular constituent of USH, so far. By introducing a human mutation into the harmonin-encoding USH1C gene in pigs, we generated the first translational animal model for USH type 1 with characteristic hearing defect, vestibular dysfunction, and visual impairment.
View Article and Find Full Text PDFThe ARF family of regulatory GTPases is ancient, with 16 members predicted to have been present in the last eukaryotic common ancestor. Our phylogenetic profiling of paralogues in diverse species identified four family members whose presence correlates with that of a cilium/flagellum: ARL3, ARL6, ARL13, and ARL16. No prior evidence links ARL16 to cilia or other cell functions, despite its presence throughout eukaryotes.
View Article and Find Full Text PDFELMODs are a family of three mammalian paralogues that display GTPase-activating protein (GAP) activity toward a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion.
View Article and Find Full Text PDFThe identification of genetic defects that underlie inherited retinal diseases (IRDs) paves the way for the development of therapeutic strategies. Nonsense mutations caused approximately 12% of all IRD cases, resulting in a premature termination codon (PTC). Therefore, an approach that targets nonsense mutations could be a promising pharmacogenetic strategy for the treatment of IRDs.
View Article and Find Full Text PDF