Drug abuse is a common and heritable set of disorders, but the underlying genetic factors are largely unknown. We conducted genome-wide association studies of drug abuse using 7 million imputed single nucleotide polymorphisms (SNPs) and insertions/deletions in African Americans (AAs; n = 3742) and European Americans (EAs; n = 6845). Cases were drawn from the Urban Health Study of street-recruited people, who injected drugs and reported abusing opioids, cocaine, marijuana, stimulants and/or other drugs 10 or more times in the past 30 days, and were compared with population controls.
View Article and Find Full Text PDFNicotine dependence is influenced by chromosome 15q25.1 single nucleotide polymorphisms (SNPs), including the missense SNP rs16969968 that alters function of the α5 nicotinic acetylcholine receptor (CHRNA5) and noncoding SNPs that regulate CHRNA5 mRNA expression. We tested for cis-methylation quantitative trait loci (cis-meQTLs) using SNP genotypes and DNA methylation levels measured across the IREB2-HYKK-PSMA4-CHRNA5-CHRNA3-CHRNB4 genes on chromosome 15q25.
View Article and Find Full Text PDFObjective: The bone marrow stromal cell antigen 2 (BST2) gene encodes a host restriction factor that acts as an innate immune sensor of HIV-1 exposure and suppresses release of HIV-1 particles. We aimed to identify associations of variants in the BST2 gene region with HIV-1 acquisition and disease progression.
Design/methods: Using HIV+ cases and HIV- controls from the Urban Health Study (n=3136 African Americans and European Americans who inject drugs), we tested 470 variants in BST2 and its flanking regions for association with HIV-1 acquisition and log-transformed viral load.
Fifty percent of variability in HIV-1 susceptibility is attributable to host genetics. Thus identifying genetic associations is essential to understanding pathogenesis of HIV-1 and important for targeting drug development. To date, however, CCR5 remains the only gene conclusively associated with HIV acquisition.
View Article and Find Full Text PDFBackground: No opioid receptor, mu 1 (OPRM1) gene polymorphisms, including the functional single nucleotide polymorphism (SNP) rs1799971, have been conclusively associated with heroin/other opioid addiction, despite their biological plausibility. We used evidence of polymorphisms altering OPRM1 expression in normal human brain tissue to nominate and then test associations with heroin addiction.
Methods: We tested 103 OPRM1 SNPs for association with OPRM1 messenger RNA expression in prefrontal cortex from 224 European Americans and African Americans of the BrainCloud cohort.
A great promise of publicly sharing genome-wide association data is the potential to create composite sets of controls. However, studies often use different genotyping arrays, and imputation to a common set of SNPs has shown substantial bias: a problem which has no broadly applicable solution. Based on the idea that using differing genotyped SNP sets as inputs creates differential imputation errors and thus bias in the composite set of controls, we examined the degree to which each of the following occurs: (1) imputation based on the union of genotyped SNPs (i.
View Article and Find Full Text PDFGenotype imputation, used in genome-wide association studies to expand coverage of single nucleotide polymorphisms (SNPs), has performed poorly in African Americans compared to less admixed populations. Overall, imputation has typically relied on HapMap reference haplotype panels from Africans (YRI), European Americans (CEU), and Asians (CHB/JPT). The 1000 Genomes project offers a wider range of reference populations, such as African Americans (ASW), but their imputation performance has had limited evaluation.
View Article and Find Full Text PDFMotivation: Mining the biomedical literature for references to genes and proteins always involves a tradeoff between high precision with false negatives, and high recall with false positives. Having a reliable method for assessing the relevance of literature mining results is crucial to finding ways to balance precision and recall, and for subsequently building automated systems to analyze these results. We hypothesize that abstracts and titles that discuss the same gene or protein use similar words.
View Article and Find Full Text PDF