Publications by authors named "Joshua L Justice"

The DNA-dependent protein kinase, DNA-PK, is an essential regulator of DNA damage repair. DNA-PK-driven phosphorylation events and the activated DNA damage response (DDR) pathways are also components of antiviral intrinsic and innate immune responses. Yet, it is not clear whether and how the DNA-PK response differs between these two forms of nucleic acid stress-DNA damage and DNA virus infection.

View Article and Find Full Text PDF

This study expands the growing understanding that protein acetylation is a highly regulated molecular toggle of protein function in both host anti-viral defense and viral replication. We describe a pro-viral role for the human enzyme SIRT2, showing that its deacetylase activity supports HCMV replication. By integrating quantitative proteomics, flow cytometry cell cycle assays, microscopy, and functional virology assays, we investigate the temporality of SIRT2 functions and substrates.

View Article and Find Full Text PDF

Communication between infected cells and cells in the surrounding tissue is a determinant of viral spread. However, it remains unclear how cells in close or distant proximity to an infected cell respond to primary or secondary infections. We establish a cell-based system to characterize a virus microenvironment, distinguishing infected, neighboring, and distal cells.

View Article and Find Full Text PDF

The coevolution of vertebrate and mammalian hosts with DNA viruses has driven the ability of host cells to distinguish viral from cellular DNA in the nucleus to induce intrinsic immune responses. Concomitant viral mechanisms have arisen to inhibit DNA sensing. At this virus-host interface, emerging evidence links cytokine responses and cellular homeostasis pathways, particularly the DNA damage response (DDR).

View Article and Find Full Text PDF

BK polyomavirus (PyV) infects the genitourinary tract of >90% of the adult population. Immunosuppression increases the risk of viral reactivation, making BKPyV a leading cause of graft failure in kidney transplant recipients. Polyomaviruses have a small double-stranded DNA (dsDNA) genome that requires host replication machinery to amplify the viral genome.

View Article and Find Full Text PDF

Dynamically shifting protein-protein interactions (PPIs) regulate cellular responses to viruses and the resulting immune signaling. Here, we use thermal proximity coaggregation (TPCA) mass spectrometry to characterize the on-off behavior of PPIs during infection with herpes simplex virus 1 (HSV-1), a virus with an ancient history of coevolution with hosts. Advancing the TPCA analysis to infer associations de novo, we build a time-resolved portrait of thousands of host-host, virus-host, and virus-virus PPIs.

View Article and Find Full Text PDF

The integrity and regulation of the nuclear lamina is essential for nuclear organization and chromatin stability, with its dysregulation being linked to laminopathy diseases and cancer. Although numerous posttranslational modifications have been identified on lamins, few have been ascribed a regulatory function. Here, we establish that lamin B1 (LMNB1) acetylation at K134 is a molecular toggle that controls nuclear periphery stability, cell cycle progression, and DNA repair.

View Article and Find Full Text PDF
Article Synopsis
  • The Human Proteome Organization (HUPO) initiated the Human Proteome Project (HPP) in 2010 to promote global cooperation in studying the human proteome, focusing on data sharing and quality assurance.
  • Over the past decade, the HPP has built partnerships, set guidelines, and reanalyzed existing data to enhance our understanding of the human proteome.
  • Celebrating its tenth anniversary, the HPP has reported a comprehensive 90.4% high-stringency human proteome blueprint, which is crucial for advancing knowledge in health and disease, particularly in areas like cancer and cardiovascular conditions.
View Article and Find Full Text PDF

BK polyomavirus (PyV) is a major source of kidney failure in transplant recipients. The standard treatment for patients with lytic BKPyV infection is to reduce immunosuppressive therapy, which increases the risk of graft rejection. PyVs are DNA viruses that rely upon host replication proteins for viral genome replication.

View Article and Find Full Text PDF

Polyomaviruses are a family of small DNA viruses that are associated with a number of severe human diseases, particularly in immunocompromised individuals. The detailed virus-host interactions during lytic polyomavirus infection are not fully understood. Here, we report the first nuclear proteomic study with BK polyomavirus (BKPyV) in a primary renal proximal tubule epithelial cell culture system using stable isotope labeling by amino acids in cell culture (SILAC) proteomic profiling coupled with liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

The Atyidae are caridean shrimp possessing hair-like setae on their claws and are important contributors to ecological services in tropical and temperate fresh and brackish water ecosystems. Complete mitochondrial genomes have only been reported from five of the 449 species in the family, thus limiting understanding of mitochondrial genome evolution and the phylogenetic utility of complete mitochondrial sequences in the Atyidae. Here, comparative analyses of complete mitochondrial genomes from eight genetic lineages of Halocaridina rubra, an atyid endemic to the anchialine ecosystem of the Hawaiian Archipelago, are presented.

View Article and Find Full Text PDF

Viruses are obligate intracellular parasites that subvert cellular metabolism and pathways to mediate their own replication-normally at the expense of the host cell. Polyomaviruses are a group of small DNA viruses, which have long been studied as a model for eukaryotic DNA replication. Polyomaviruses manipulate host replication proteins, as well as proteins involved in DNA maintenance and repair, to serve as essential cofactors for productive infection.

View Article and Find Full Text PDF

Unlabelled: BK polyomavirus (BKPyV) reactivation is associated with severe human disease in kidney and bone marrow transplant patients. The interplay between viral and host factors that regulates the productive infection process remains poorly understood. We have previously reported that the cellular DNA damage response (DDR) is activated upon lytic BKPyV infection and that its activation is required for optimal viral replication in primary kidney epithelial cells.

View Article and Find Full Text PDF