Solid-state diffusion is often the primary limitation in the synthesis of crystalline inorganic materials and prevents the potential discovery and isolation of new materials that may not be the most stable with respect to the reaction conditions. Synthetic approaches that circumvent diffusion in solid-state reactions are rare and often allow the formation of metastable products. To this end, we present an in situ study of the solid-state metathesis reactions MCl2 + Na2S2 → MS2 + 2 NaCl (M = Fe, Co, Ni) using synchrotron powder X-ray diffraction and differential scanning calorimetry.
View Article and Find Full Text PDFRational preparation of materials by design is a major goal of inorganic, solid-state, and materials chemists alike. Oftentimes, the use of nonmetallurgical reactions (e.g.
View Article and Find Full Text PDFInorganic materials with organic constituents-hybrid materials-have shown incredible promise as chemically tunable functional materials with interesting optical and electronic properties. Here, the preparation and structure are reported of two hybrid materials containing the optoelectronically active tropylium ion within tin- and lead-iodide inorganic frameworks with distinct topologies. The crystal structures of tropylium tin iodide, (C7H7)2SnI6, and tropylium lead iodide, C7H7PbI3, were solved using high-resolution synchrotron powder X-ray diffraction informed by X-ray pair distribution function data and high-resolution time-of-flight neutron diffraction.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2014
Tetraborides of chromium and manganese exhibit an unusual boron-atom framework that resembles the hypothetical tetragonal diamond. They are believed to be very hard. Single crystals of MnB4 have now been grown.
View Article and Find Full Text PDFThe platinum group metals (PGMs) are widely employed as catalysts, especially for the mitigation of automotive exhaust pollutants. The low natural abundance of PGMs and increasing demand from the expanding automotive sector necessitates strategies to improve the efficiency of PGM use. Conventional catalysts typically consist of PGM nanoparticles dispersed on high surface area oxide supports.
View Article and Find Full Text PDFJ Phys Condens Matter
August 2013
Magnetic ordering in the geometrically frustrated magnetic oxide spinels MgCr2O4 and ZnCr2O4 is accompanied by a structural change that helps to relieve the frustration. Analysis of high-resolution synchrotron x-ray scattering reveals that the low-temperature structures are well described by a two-phase model of tetragonal I41/amd and orthorhombic Fddd symmetries. The Cr4 tetrahedra of the pyrochlore lattice are distorted at these low-temperatures, with the Fddd phase displaying larger distortions than the I41/amd phase.
View Article and Find Full Text PDFThe "lone" 6s electron pair often plays a key role in determining the structure and physical properties of compounds containing sixth-row elements in their lower oxidation states: Tl(+), Pb(2+), and Bi(3+) with the [Xe]4f(14)5d(10)6s(2) electronic configuration. The lone pairs on these ions are associated with reduced structural symmetries, including ferroelectric instabilities and other important phenomena. Here we consider the isoelectronic auride Au(-) ion with the [Xe]4f(14)5d(10)6s(2) electronic configuration.
View Article and Find Full Text PDFChromium tetraboride [orthorhombic, space group Pnnm (No. 58), a = 474.65(9) pm, b = 548.
View Article and Find Full Text PDFSubstituted N-alkyldinaphthocarbazoles were synthesized using a key double Diels-Alder reaction. The angular nature of the dinaphthocarbazole system allows for increased stability of the conjugated system relative to linear analogues. The N-alkyldinaphthocarbazoles were characterized by UV-vis absorption and fluorescence spectroscopy as well as cyclic voltammetry.
View Article and Find Full Text PDFFirst-principles electronic structure calculations are presented on a variety of Au compounds and species--encompassing a wide range of formal oxidation states, coordination geometries, and chemical environments--in order to understand the potentially systematic behavior in the nature and energetics of d states that are implicated in catalytic activity. In particular, we monitor the position of the d-band center, which has been suggested to signal catalytic activity for reactions such as CO oxidation. We find a surprising absence of any kind of correlation between the formal oxidation state of Au and the position of the d-band center.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2011
PbPdO₂, a ternary compound containing the lone pair active ion Pb²⁺ and the square planar d⁸Pd²⁺ ion, has attracted recent interest because of the suggestion that its electronic structure, calculated within density functional theory using either the local density or the generalized gradient approximation, displays zero-gap behavior. In light of the potential ease of doping magnetic ions in this structure, it has been suggested that the introduction of spin, in conjunction with zero band gap, can result in unusual magnetic ground states and unusual magnetotransport. It is known that most electronic structure calculations do not properly obtain a band gap even for the simple oxide PdO, and instead obtain a metal or a zero-gap semiconductor.
View Article and Find Full Text PDFCrystals of chromium tetraboride, a recently proposed candidate superhard material, have been grown for the first time to allow for a first structure refinement of the compound [orthorhombic, space group Immm (No. 71), a = 474.82(8) pm, b = 548.
View Article and Find Full Text PDFComplex oxides--containing at least two different cations on crystallographically distinct sites--have recently been shown to display redox cycling of platinum group metals (PGMs), such as Pd; for example, Pd-substituted complex oxides can reversibly extrude metallic Pd under reducing conditions and then reincorporate Pd(2+) ions into the lattice under oxidizing conditions. The title compounds, YMn(0.5)Fe(0.
View Article and Find Full Text PDFThe precipitation of crystals with stoichiometric and ordered arrangements of distinct metal cations often requires carefully designed molecular precursors and/or sufficient activation energy in addition to the necessary mass transport. Here, we study the formation of ordered double perovskite hydroxides, MnSn(OH)(6) and CoSn(OH)(6), of the generic chemical formula, BB'(OH)(6) (no A site), using kinetic control of aqueous hydrolysis from simple metal salt solutions. We find that the precipitation yields ordered compounds only when the B ion is Mn(II) or Co(II), and not when it is any other divalent transition metal ion, or Zn(II).
View Article and Find Full Text PDFStructures of layered metal hydroxides are not well described by traditional crystallography. Total scattering from a synthesis-controlled subset of these materials, as described here, reveals that different cobalt coordination polyhedra cluster within each layer on short length scales, offering new insights and approaches for understanding the properties of these and related layered materials. Structures related to that of brucite [Mg(OH)(2)] are ubiquitous in the mineral world and offer a variety of useful functions ranging from catalysis and ion-exchange to sequestration and energy transduction, including applications in batteries.
View Article and Find Full Text PDFLa(4)LiAuO(8) and La(2)BaPdO(5), two previously known oxides, are presented as model compounds for examining the role of isolated and immobilized Au(3+) and Pd(2+) ions in heterogeneous catalysis. Structural characterization, stability, surface composition, and electronic structure of these compounds are presented. These are examined in studies ranging from synchrotron X-ray scattering, including pair distribution function (PDF) and maximum entropy method (MEM) analysis, to density functional calculations of the electronic structures.
View Article and Find Full Text PDF