Publications by authors named "Joshua Kempner"

Intraoperative fluorescence imaging informs decisions regarding surgical margins by detecting and localizing signals from fluorescent reporters, labeling targets such as malignant tissues. This guidance reduces the likelihood of undetected malignant tissue remaining after resection, eliminating the need for additional treatment or surgery. The primary challenges in performing open-air intraoperative fluorescence imaging come from the weak intensity of the fluorescence signal in the presence of strong surgical and ambient illumination, and the auto-fluorescence of non-target components, such as tissue, especially in the visible spectral window (400-650 nm).

View Article and Find Full Text PDF

Measurement and analysis of bone morphometry in 3D micro-computed tomography volumes using automated image processing and analysis improve the accuracy, consistency, reproducibility, and speed of preclinical osteological research studies. Automating segmentation and separation of individual bones in 3D micro-computed tomography volumes of murine models presents significant challenges considering partial volume effects and joints with thin spacing, i.e.

View Article and Find Full Text PDF

We present a method for reduction of image artifacts induced by the optical heterogeneities of tissue in fluorescence molecular tomography (FMT) through identification and compensation of image regions that evidence propagation of emission light through thin or low-absorption tunnels in tissue. The light tunneled as such contributes to the emission image as spurious components that might substantially overwhelm the desirable fluorescence emanating from the targeted lesions. The proposed method makes use of the strong spatial correlation between the emission and excitation images to estimate the tunneled components and yield a residual image that mainly consists of the signal due to the desirable fluorescence.

View Article and Find Full Text PDF