Publications by authors named "Joshua Katzhendler"

Polyesters derived from the α-hydroxy acids, lactic acid, and glycolic acid, are the most common biodegradable polymers in clinical use. These polymers have been tailored for a range of applications that require a physical material possessing. The physical and mechanical properties of these polymers fit the specific application and also safely biodegrade.

View Article and Find Full Text PDF

Rel proteins in bacteria synthesize the signal molecules (p)ppGpp that trigger the Stringent Response, responsible for bacterial survival. Inhibiting the activity of such enzymes prevents the Stringent Response, resulting in the inactivation of long-term bacterial survival strategies, leading to bacterial cell death. Herein, we describe a series of deoxyguanosine-based analogs of the Relacin molecule that inhibit in vitro the synthetic activity of Rel proteins from Gram positive and Gram negative bacteria, providing a deeper insight on the SAR for a better understanding of their potential interactions and inhibitory activity.

View Article and Find Full Text PDF

Biodegradable polyesters derived from hydrophobic amino acids are synthesized by various techniques, resulting in a wide range of molecular weights. The polymers are prepared via a) direct condensation with p-toluenesulfonic acid (PTSA) as catalyst, b) ring-opening polymerization (ROP) of O-carboxyanhydrides, and c) ROP of cyclic dilactones. The polymers obtained by the first method reach a molecular weight ranging from 1000 to 3000 Da, whereas those formed by the second and third method yield extended molecular weights of 15000-30000 Da.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML) is characterized by the presence of p210(Bcr-Abl) which exhibits an abnormal kinase activity. Selective Abl kinase inhibitors have been successfully established for the treatment of CML. Despite high rates of clinical response, CML patients can develop resistance against these kinase inhibitors mainly due to point mutations within the Abl protein kinase domain.

View Article and Find Full Text PDF

Finding bacterial cellular targets for developing novel antibiotics has become a major challenge in fighting resistant pathogenic bacteria. We present a novel compound, Relacin, designed to inhibit (p)ppGpp production by the ubiquitous bacterial enzyme RelA that triggers the Stringent Response. Relacin inhibits RelA in vitro and reduces (p)ppGpp production in vivo.

View Article and Find Full Text PDF

To determine whether the efficacy of entry and action of antisense oligonucleotides (AS-ODN) on hematopoietic stem cells in vitro could be improved by the addition of polyethylene glycol (PEG), a molecule of PEG was bound to AS- or sense-acetylcholinesterase (AS-ACHE or S-ACHE). The introduction of 0.1-0.

View Article and Find Full Text PDF