Publications by authors named "Joshua Kas"

Shake effects, resulting from sudden core potential changes during photoexcitation, are well-known in X-ray photoelectron spectroscopy (XPS) and often produce satellite peaks due to many-body excitations. It has been thought, however, that they are negligible in core-to-core X-ray emission spectroscopy (CTC-XES), where the difference in core-hole potentials upon radiative decay is rather small. We demonstrate that shake effects are significant in Kα XES from 3d transition metal systems with nominally zero valence electrons.

View Article and Find Full Text PDF

Potassium (K) is an essential nutrient for plant growth, and despite its abundance in soil, most of the K is structurally bound in minerals, limiting its bioavailability and making this soil K reservoir largely inaccessible to plants. Microbial biochemical weathering has been shown to be a promising pathway to sustainably increase plant available K. However, the mechanisms underpinning microbial K uptake, transformation, storage, and sharing are poorly resolved.

View Article and Find Full Text PDF

X-Ray and related spectroscopies are powerful probes of atomic, vibrational, and electronic structure. In order to unlock the full potential of such experimental techniques, accurate and efficient theoretical and computational approaches are essential. Here we review the status of a variety of first-principles and nearly first principles techniques for X-ray spectroscopies such as X-ray absorption, X-ray emission, and X-ray photoemission, with a focus on Green's function based methods.

View Article and Find Full Text PDF

The L-edge X-ray Absorption Near Edge Structure (XANES) is widely used in the characterization of transition metal compounds. Here, we report the development of a database of computed L-edge XANES using the multiple scattering theory-based FEFF9 code. The initial release of the database contains more than 140,000 L-edge spectra for more than 22,000 structures generated using a high-throughput computational workflow.

View Article and Find Full Text PDF

We demonstrate that the possibility of monitoring relative photoionization cross sections over a large photon energy range allows us to study and disentangle shake processes and intramolecular inelastic scattering effects. In this gas-phase study, relative intensities of the carbon 1s photoelectron lines from chemically inequivalent carbon atoms in the same molecule have been measured as a function of the incident photon energy in the range of 300-6000 eV. We present relative cross sections for the chemically shifted carbon 1s lines in the photoelectron spectra of ethyl trifluoroacetate (the "ESCA" molecule).

View Article and Find Full Text PDF

Extended x-ray absorption fine structure (EXAFS) is well-suited for investigations of structure and disorder of complex materials. Recently, experimental measurements and analysis of EXAFS have been carried out to elucidate the mechanisms responsible for the negative thermal expansion (NTE) in zirconium tungstate (ZrWO). In contrast to previous work suggesting that transverse O-displacements are largely responsible, the EXAFS analysis suggested that correlated rotations and translations of octahedra and tetrahedra within the structure are a major source.

View Article and Find Full Text PDF
Article Synopsis
  • X-ray emission spectroscopy is becoming a crucial method for analyzing electronic structures, complementing x-ray absorption techniques by focusing on electronic states near specific elements like sulfur and phosphorus.
  • A compact spectrometer using a dispersive refocusing Rowland circle design provides high energy resolution in the 2-2.5 keV range, allowing effective use of low-powered x-ray sources while achieving count rates similar to those of advanced synchrotron facilities.
  • The portable design of this spectrometer, with a 10-cm diameter Rowland circle and a small x-ray camera, offers high instrumental efficiency and potential for enhanced efficiency through future multiplexing or use in controlled environments.
View Article and Find Full Text PDF

Dicesium uranyl tetrachloride (Cs2UO2Cl4) has been a model compound for experimental and theoretical studies of electronic structure of U(VI) in the form of UO2(2+) (uranyl ion) for decades. We have obtained angle-resolved electronic structure information for oriented Cs2UO2Cl4 crystal, specifically relative energies of 5f and 6d valence orbitals probed with extraordinary energy resolution by polarization dependent high energy resolution X-ray absorption near edge structure (PD-HR-XANES) and compare these with predictions from quantum chemical Amsterdam density functional theory (ADF) and ab initio real space multiple-scattering Green's function based FEFF codes. The obtained results have fundamental value but also demonstrate an experimental approach, which offers great potential to benchmark and drive improvement in theoretical calculations of electronic structures of actinide elements.

View Article and Find Full Text PDF

Determination of the factors that affect the d-band center of catalysts is required to explain their catalytic properties. Resonant inelastic X-ray scattering (RIXS) enables direct imaging of electronic transitions in the d-band of Pt catalysts in real time and in realistic environmental conditions. Through a combination of in situ, temperature-resolved RIXS measurements and theoretical simulations we isolated and quantified the effects of bond-length disorder and adsorbate coverage (CO and H2) on the d-band center of 1.

View Article and Find Full Text PDF

Reported here are measurements of the penetration depth and spatial distribution of photoelectron (PE) damage excited by 18.6 keV X-ray photons in a lysozyme crystal with a vertical submicrometre line-focus beam of 0.7 µm full-width half-maximum (FWHM).

View Article and Find Full Text PDF

Carbon 1s photoelectron spectra for 2-butyne (CH3C≡CCH3) measured in the photon energy range from threshold to 150 eV above threshold show oscillations in the intensity ratio C2,3/C1,4. Similar oscillations have been seen in chloroethanes, where the effect has been attributed to EXAFS-type scattering from the substituent chlorine atoms. In 2-butyne, however, there is no high-Z atom to provide a scattering center and, hence, oscillations of the magnitude observed are surprising.

View Article and Find Full Text PDF

X-ray Raman scattering (XRS) provides a bulk-sensitive method of measuring the extended X-ray absorption fine structure (EXAFS) of soft X-ray absorption edges. Accurate measurements and data analysis procedures for the determination of XRS-EXAFS of polycrystalline diamond are described. The contributions of various angular-momentum components beyond the dipole limit to the atomic background and the EXAFS oscillations are incorporated using self-consistent real-space multiple-scattering calculations.

View Article and Find Full Text PDF

The experimental valence band photoemission spectrum of semiconductors exhibits multiple satellites that cannot be described by the GW approximation for the self-energy in the framework of many-body perturbation theory. Taking silicon as a prototypical example, we compare experimental high energy photoemission spectra with GW calculations and analyze the origin of the GW failure. We then propose an approximation to the functional differential equation that determines the exact one-body Green's function, whose solution has an exponential form.

View Article and Find Full Text PDF

Recently, strategies to reduce primary radiation damage have been proposed which depend on focusing X-rays to dimensions smaller than the penetration depth of excited photoelectrons. For a line focus as used here the penetration depth is the maximum distance from the irradiated region along the X-ray polarization direction that the photoelectrons penetrate. Reported here are measurements of the penetration depth and distribution of photoelectron damage excited by 18.

View Article and Find Full Text PDF

Ultrafast X-ray absorption spectroscopy is a powerful tool to observe electronic and geometric structures of short-lived reaction intermediates. The ab initio FEFF9 code is applied to simulate the Pt L(3)-edge XANES spectrum of the photocatalytic diplatinum molecule [Pt(2)(P(2)O(5)H(2))(4)](4-) and the photo-induced changes that occur therein. The spectra are interpreted within a XAFS-like scattering theoretical framework (bound-continuum transitions) or in terms of a final-state local l-projected density of states (LDOS) (bound-bound transitions).

View Article and Find Full Text PDF

We briefly review our implementation of the real-space Green's function (RSGF) approach for calculations of X-ray spectra, focusing on recently developed parameter free models for dominant many-body effects. Although the RSGF approach has been widely used both for near edge (XANES) and extended (EXAFS) ranges, previous implementations relied on semi-phenomenological methods, e.g.

View Article and Find Full Text PDF