Publications by authors named "Joshua J Santiana"

Controllable release of multiple distinct cargoes from a nanomaterial is crucial to a variety of therapeutic and catalytic applications. In this study, we describe a DNA functionalized multi-layered surface crosslinked micelle (mlSCM) consisting of individually degradable layers. The DNA modified mlSCM has the ability to encapsulate separate small molecule cargo in distinct compartments within the nanocapsule, separated by chemical crosslinkers.

View Article and Find Full Text PDF

Herein, we describe the characterization of a novel self-assembling and intracellular disassembling nanomaterial for nucleic acid delivery and targeted gene knockdown. By using a recently developed nucleic acid nanocapsule (NAN) formed from surfactants and conjugated DNAzyme (DNz) ligands, it is shown that DNz-NAN can enable cellular uptake of the DNAzyme and result in 60 % knockdown of a target gene without the use of transfection agents. The DNAzyme also exhibits activity without chemical modification, which we attribute to the underlying nanocapsule design and release of hydrophobically modified nucleic acids as a result of enzymatically triggered disassembly of the NAN.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method for creating nanocapsules that use photo-cross-linking to embed peptides, enabling controlled release of substances based on enzyme recognition.
  • The research involved incorporating various peptide cross-linkers into the nanocapsules and testing their effectiveness against different proteases, confirming their specificity for enzyme targets through advanced imaging techniques.
  • The modular approach has promising applications for biosensing and drug delivery, both inside and outside of cells.
View Article and Find Full Text PDF

Herein we describe a nucleic acid functionalized nanocapsule in which nucleic acid ligands are assembled and disassembled in the presence of enzymes. The particles are fully degradable in response to esterases due to an embedded ester cross-linker in the particle's core. During synthesis the nanocapsules can be loaded with hydrophobic small molecules and post self-assembly undergo covalent cross-linking using copper catalyzed click chemistry.

View Article and Find Full Text PDF