Publications by authors named "Joshua J P Thompson"

Article Synopsis
  • Moiré superlattices are new structures used to explore complex quantum behaviors, traditionally made from two-dimensional van der Waals materials.
  • Researchers developed these structures using ultra-thin, ligand-free halide perovskites, demonstrating various periodic patterns with advanced imaging techniques.
  • Findings indicate that a specific twist angle (~10°) leads to localized bright excitons and improved exciton emission, suggesting that two-dimensional perovskites could be effective materials for moiré systems at room temperature.
View Article and Find Full Text PDF

The vertical stacking of two-dimensional materials into heterostructures gives rise to a plethora of intriguing optoelectronic properties and presents an unprecedented potential for technological development. While much progress has been made combining different monolayers of transition metal dichalcogenides (TMDs), little is known about TMD-based heterostructures including organic layers of molecules. Here, we present a joint theory-experiment study on a TMD/tetracene heterostructure demonstrating clear signatures of spatially separated interlayer excitons in low temperature photoluminescence spectra.

View Article and Find Full Text PDF

Two-dimensional (2D) semiconductors have opened new horizons for future optoelectronic applications through efficient light-matter and many-body interactions at quantum level. Anisotropic 2D materials like rhenium disulphide (ReS) present a new class of materials with polarized excitonic resonances. Here, we demonstrate a WSe/ReS heterostructure which exhibits a significant photoluminescence quenching at room temperature as well as at low temperatures.

View Article and Find Full Text PDF

Twisted atomically thin semiconductors are characterized by moiré excitons. Their optical signatures and selection rules are well understood. However, their hybridization with photons in the strong coupling regime for heterostructures integrated in an optical cavity has not been the focus of research yet.

View Article and Find Full Text PDF

The optical properties of monolayer transition metal dichalcogenides are dominated by tightly-bound excitons. They form at distinct valleys in reciprocal space, and can interact the valley-exchange coupling, modifying their dispersion considerably. Here, we predict that angle-resolved photoluminescence can be used to probe the changes of the excitonic dispersion.

View Article and Find Full Text PDF