Publications by authors named "Joshua J Larocque"

Intracranial EEG is used for two main purposes: to determine (i) if epileptic networks are amenable to focal treatment and (ii) where to intervene. Currently, these questions are answered qualitatively and differently across centres. There is a need to quantify the focality of epileptic networks systematically, which may guide surgical decision-making, enable large-scale data analysis and facilitate multi-centre prospective clinical trials.

View Article and Find Full Text PDF

Patients with drug-resistant temporal lobe epilepsy often undergo intracranial EEG recording to capture multiple seizures in order to lateralize the seizure onset zone. This process is associated with morbidity and often ends in postoperative seizure recurrence. Abundant interictal (between-seizure) data are captured during this process, but these data currently play a small role in surgical planning.

View Article and Find Full Text PDF

Patients with drug-resistant temporal lobe epilepsy often undergo intracranial EEG recording to capture multiple seizures in order to lateralize the seizure onset zone. This process is associated with morbidity and often ends in postoperative seizure recurrence. Abundant interictal (between-seizure) data is captured during this process, but these data currently play a small role in surgical planning.

View Article and Find Full Text PDF

Rationale: Seizure induction techniques are used in the epilepsy monitoring unit (EMU) to increase diagnostic yield and reduce length of stay. There are insufficient data on the efficacy of alcohol as an induction technique.

Methods: We performed a retrospective cohort study using six years of EMU data at our institution.

View Article and Find Full Text PDF

Background: Longitudinal EEG recorded by implanted devices is critical for understanding and managing epilepsy. Recent research reports patient-specific, multi-day cycles in device-detected epileptiform events that coincide with increased likelihood of clinical seizures. Understanding these cycles could elucidate mechanisms generating seizures and advance drug and neurostimulation therapies.

View Article and Find Full Text PDF

Introduction: Intracranial EEG (IEEG) is used for 2 main purposes, to determine: (1) if epileptic networks are amenable to focal treatment and (2) where to intervene. Currently these questions are answered qualitatively and sometimes differently across centers. There is a need for objective, standardized methods to guide surgical decision making and to enable large scale data analysis across centers and prospective clinical trials.

View Article and Find Full Text PDF

Background: Longitudinal EEG recorded by implanted devices is critical for understanding and managing epilepsy. Recent research reports patient-specific, multi-day cycles in device-detected epileptiform events that coincide with increased likelihood of clinical seizures. Understanding these cycles could elucidate mechanisms generating seizures and advance drug and neurostimulation therapies.

View Article and Find Full Text PDF

Near-threshold perception is a paradigm case of awareness diverging from reality - the perception of an unchanging stimulus can vacillate from undetected to clearly perceived. The amplitude of low-frequency brain oscillations - particularly in the alpha-band (8-13 Hz) - has emerged as a reliable predictor of trial-to-trial variability in perceptual decisions based on simple, low-level stimuli. Here, we addressed the question of how spontaneous oscillatory amplitude impacts subjective and objective aspects of perception using high-level visual stimuli.

View Article and Find Full Text PDF

We describe an educational intervention for neurology residents aimed at developing feedback skills. An objective structured clinical examination case was designed to simulate the provision of feedback to a medical student. After the simulated case session, residents received structured, individualized feedback on their performance and then participated in a group discussion about feedback methods.

View Article and Find Full Text PDF

What mechanisms underlie the prioritization of neural representations of visually perceived information to guide behavior? We assessed the dynamics whereby attention biases competition for representation of visual stimuli by enhancing representations of relevant information and suppressing the irrelevant. Multivariate pattern analysis (MVPA) classifiers were trained to discriminate patterns of fMRI activity associated with each of three stimuli, within several predefined ROIs. Participants performed a change-detection task wherein two of three presented items flashed at 1 Hz, one to each side of central fixation.

View Article and Find Full Text PDF

Although the manipulation of load is popular in visual working memory research, many studies confound general attentional demands with context binding by drawing memoranda from the same stimulus category. In this fMRI study of human observers (both sexes), we created high- versus low-binding conditions, while holding load constant, by comparing trials requiring memory for the direction of motion of one random dot kinematogram (RDK; 1M trials) versus for three RDKs (3M), or versus one RDK and two color patches (1M2C). Memory precision was highest for 1M trials and comparable for 3M and 1M2C trials.

View Article and Find Full Text PDF

Consciousness never fades during waking. However, when awakened from sleep, we sometimes recall dreams and sometimes recall no experiences. Traditionally, dreaming has been identified with rapid eye-movement (REM) sleep, characterized by wake-like, globally 'activated', high-frequency electroencephalographic activity.

View Article and Find Full Text PDF

The ability to hold information in working memory is fundamental for cognition. Contrary to the long-standing view that working memory depends on sustained, elevated activity, we present evidence suggesting that humans can hold information in working memory via "activity-silent" synaptic mechanisms. Using multivariate pattern analyses to decode brain activity patterns, we found that the active representation of an item in working memory drops to baseline when attention shifts away.

View Article and Find Full Text PDF

A long-standing assumption of cognitive neuroscience has been that working memory (WM) is accomplished by sustained, elevated neural activity. More recently, theories of WM have expanded this view by describing different attentional states in WM with differing activation levels. Several studies have used multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data to study neural activity corresponding to these WM states.

View Article and Find Full Text PDF

Visual awareness is hypothesized to be intimately related to visual working memory (WM), such that information present in WM is thought to have necessarily been represented consciously. Recent work has challenged this longstanding view by demonstrating that visual stimuli rated by observers as unseen can nevertheless be maintained over a delay period. These experiments have been criticized, however, on the basis that subjective awareness ratings may contain response bias (e.

View Article and Find Full Text PDF

When a test of working memory (WM) requires the retention of multiple items, a subset of them can be prioritized. Recent studies have shown that, although prioritized (i.e.

View Article and Find Full Text PDF

Objectives: To assess how the characteristics of slow waves and spindles change in the falling-asleep process.

Design: Participants undergoing overnight high-density electroencephalographic recordings were awakened at 15- to 30-min intervals. One hundred forty-one falling-asleep periods were analyzed at the scalp and source level.

View Article and Find Full Text PDF

Short-term memory (STM) refers to the capacity-limited retention of information over a brief period of time, and working memory (WM) refers to the manipulation and use of that information to guide behavior. In recent years it has become apparent that STM and WM interact and overlap with other cognitive processes, including attention (the selection of a subset of information for further processing) and long-term memory (LTM-the encoding and retention of an effectively unlimited amount of information for a much longer period of time). Broadly speaking, there have been two classes of memory models: systems models, which posit distinct stores for STM and LTM (Atkinson and Shiffrin, 1968; Baddeley and Hitch, 1974); and state-based models, which posit a common store with different activation states corresponding to STM and LTM (Cowan, 1995; McElree, 1996; Oberauer, 2002).

View Article and Find Full Text PDF

Dreaming-a particular form of consciousness that occurs during sleep-undergoes major changes in the course of the night. We aimed to outline state-dependent features of consciousness using a paradigm with multiple serial awakenings/questionings that allowed for within as well as between subject comparisons. Seven healthy participants who spent 44 experimental study nights in the laboratory were awakened by a computerized sound at 15-30 min intervals, regardless of sleep stage, and questioned for the presence or absence of sleep consciousness.

View Article and Find Full Text PDF

Traditionally, load sensitivity of sustained, elevated activity has been taken as an index of storage for a limited number of items in visual short-term memory (VSTM). Recently, studies have demonstrated that the contents of a single item held in VSTM can be decoded from early visual cortex, despite the fact that these areas do not exhibit elevated, sustained activity. It is unknown, however, whether the patterns of neural activity decoded from sensory cortex change as a function of load, as one would expect from a region storing multiple representations.

View Article and Find Full Text PDF

For decades it has been assumed that sustained, elevated neural activity--the so-called active trace--is the neural correlate of the short-term retention of information. However, a recent fMRI study has suggested that this activity may be more related to attention than to retention. Specifically, a multivariate pattern analysis failed to find evidence that information that was outside the focus of attention, but nonetheless in STM, was retained in an active state.

View Article and Find Full Text PDF

Protein conformational transition from alpha-helices to beta-sheets precedes aggregation of proteins implicated in many diseases, including Alzheimer and prion diseases. Direct characterization of such transitions is often hindered by the complicated nature of the interaction network among amino acids. A recently engineered small protein-like peptide with a simple amino acid composition features a temperature-driven alpha-helix to beta-sheet conformational change.

View Article and Find Full Text PDF