Low-fouling or "stealth" particles composed of poly(ethylene glycol) (PEG) display a striking ability to evade phagocytic cell uptake. However, functionalizing them for specific targeting is challenging. To address this challenge, stealth PEG particles prepared by a mesoporous silica templating method are functionalized with bispecific antibodies (BsAbs) to obtain PEG-BsAb particles via a one-step binding strategy for cell and tumor targeting.
View Article and Find Full Text PDFIn this study, we synthesize charge-varied hyperbranched polymers (HBPs) and demonstrate surface charge as a key parameter directing their association with specific human blood cell types. Using fresh human blood, we investigate the association of 5 nm HBPs with six white blood cell populations in their natural milieu by flow cytometry. While most cell types associate with cationic HBPs at 4 °C, at 37 °C phagocytic cells display similar (monocyte, dendritic cell) or greater (granulocyte) association with anionic HBPs compared to cationic HBPs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2017
Directing nanoparticles to specific cell types using nonantibody-based methods is of increasing interest. Thiol-reactive nanoparticles can enhance the efficiency of cargo delivery into specific cells through interactions with cell-surface proteins. However, studies to date using this technique have been largely limited to immortalized cell lines or rodents, and the utility of this technology on primary human cells is unknown.
View Article and Find Full Text PDFNanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies.
View Article and Find Full Text PDFNovel vaccination approaches are needed to prevent and control human immunodeficiency virus (HIV) infection. A growing body of literature demonstrates the potential of nanotechnology to modulate the human immune system and generate targeted, controlled immune responses. In this Review, we summarize important advances in how 'nanovaccinology' can be used to develop safe and effective vaccines for HIV.
View Article and Find Full Text PDFBackground: Neuroblastoma is the most common extracranial solid tumor of childhood. The heterogeneous microenvironment of solid tumors contains hypoxic regions associated with poor prognosis and chemoresistance. Hypoxia implicates the actin cytoskeleton through its essential roles in motility, invasion and proliferation.
View Article and Find Full Text PDF