Understanding the formation and instability behavior of membranes is of fundamental interest and practical relevance to various biotechnological applications and self-assembly systems. Surfactant micellar membranes serve as a simple model system when surfactant molecules self-assemble into micellar structures under flow, but observing such process in real time is a major challenge due to limitations in spatiotemporal resolutions. We use a simple T-shaped microchannel to capture the formation and flow behavior of an ionic surfactant micro-micellar-membrane (μMM) when an aqueous stream of organic salt sodium salicylate (NaSal) meets a stream of cationic surfactant cetyltrimethylammonium bromide (CTAB).
View Article and Find Full Text PDFCrystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures.
View Article and Find Full Text PDFIn equilibrium, wormlike micelles can transition from entangled to branched structures with increasing surfactant concentrations and ionic strength. Under flow conditions, structural transition of micellar solutions can follow very different trajectories. In this study we consider the flow of a semi-dilute wormlike micellar solution through an array of microposts, with focus on its rheological and microstructural evolutions.
View Article and Find Full Text PDFA simple microfluidic platform was utilized to immobilize glucose oxidase (GOx) in a nonionic micellar scaffold. The immobilization of GOx was verified by using a combination of cryogenic electron microscopy (cryo-EM), scanning electron microscopy (SEM), and ultraviolet spectroscopy (UV) techniques. Chronoamperometric measurements were conducted on nanogel-GOx scaffolds under different glucose concentrations, exhibiting linear amperometric responses.
View Article and Find Full Text PDFIn this work, we consider the flow of a nonionic micellar solution (precursor) through an array of microposts, with focus on its microstructural and rheological evolution. The precursor contains polyoxyethylene(20) sorbitan monooleate (Tween-80) and cosurfactant monolaurin (ML). An irreversible flow-induced structured phase (NI-FISP) emerges after the nonionic precursor flows through the hexagonal micropost arrays, when subjected to strain rates ~10(4) s(-1) and strain ~10(3).
View Article and Find Full Text PDFWe report the formation of nanostructured toroidal micellar bundles (nTMB) from a semidilute wormlike micellar solution, evidenced by both cryogenic-electron microscopy and transmission electron microscopy images. Our strategy for creating nTMB involves a two-step protocol consisting of a simple prestraining process followed by flow through a microfluidic device containing an array of microposts, producing strain rates in the wormlike micelles on the order of 10(5) s(-1). In combination with microfluidic confinement, these unusually large strain rates allow for the formation of stable nTMB.
View Article and Find Full Text PDFSurfactant molecules can self-assemble into various morphologies under proper combinations of ionic strength, temperature, and flow conditions. At equilibrium, wormlike micelles can transition from entangled to branched and multiconnected structures with increasing salt concentration. Under certain flow conditions, micellar structural transitions follow different trajectories.
View Article and Find Full Text PDF