Publications by authors named "Joshua J Breunig"

Cancer neuroscience is a rapidly growing multidisciplinary field that conceptualizes tumors as tissues fully integrated into the nervous system. Recognizing the complexity and challenges in this field is of fundamental importance to achieving the goal of translational impact for cancer patients. Our commentary highlights key scientific priorities, optimal training settings, and roadblocks to translating scientific findings to the clinic in this emerging field, aiming to formulate a transformative and cohesive path forward.

View Article and Find Full Text PDF

Neuronal activity promotes the proliferation of healthy oligodendrocyte precursor cells (OPC) and their malignant counterparts, gliomas. Many gliomas arise from and closely resemble oligodendroglial lineage precursors, including diffuse midline glioma (DMG), a cancer affecting midline structures such as the thalamus, brainstem and spinal cord. In DMG, glutamatergic and GABAergic neuronal activity promotes progression through both paracrine signaling and through bona-fide neuron-to-glioma synapses.

View Article and Find Full Text PDF

Heterotrimeric extracellular matrix proteins laminins are mostly deposited at basal membranes and are important in repair and neoplasia. Here, we localize laminin beta 2 () at the sites of blood-brain barrier (BBB). Microvasculature (MV) of normal brain is endowed with complete coverage.

View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR)-T cell therapies targeting glioblastoma (GBM)-associated antigens such as interleukin-13 receptor subunit alpha-2 (IL-13Rα2) have achieved limited clinical efficacy to date, in part due to an immunosuppressive tumor microenvironment (TME) characterized by inhibitory molecules such as transforming growth factor-beta (TGF-β). The aim of this study was to engineer more potent GBM-targeting CAR-T cells by countering TGF-β-mediated immune suppression in the TME.

Methods: We engineered a single-chain, bispecific CAR targeting IL-13Rα2 and TGF-β, which programs tumor-specific T cells to convert TGF-β from an immunosuppressant to an immunostimulant.

View Article and Find Full Text PDF

Ependymomas are rare brain tumors that can occur in both children and adults. Subdivided by the tumors' initial location, ependymomas develop in the central nervous system in the supratentorial or infratentorial/posterior fossa region, or the spinal cord. Supratentorial ependymomas (ST-EPNs) are predominantly characterized by common driver gene fusions such as and fusions.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of SOX9 in the healing process after acute kidney injury (AKI) and how it influences whether healing leads to fibrosis or not.
  • Researchers found that cells successfully regenerating epithelial tissue turn off SOX9, while those struggling to restore normal structure keep it active, leading to chronic issues such as kidney disease.
  • The findings highlight a potential biomarker for assessing the state of kidney repair, indicating that SOX9 activity can predict whether regeneration will occur with or without fibrosis.
View Article and Find Full Text PDF

Pediatric low-grade gliomas represent the most common childhood brain tumor class. While often curable, some tumors fail to respond and even successful treatments can have life-long side effects. Many clinical trials are underway for pediatric low-grade gliomas.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most common primary malignant brain tumor, is a highly lethal form of cancer with a very limited set of treatment options. High heterogeneity in the tumor cell population and the invasive nature of these cells decrease the likely efficacy of traditional cancer treatments, thus requiring research into novel treatment options. The use of oncolytic viruses as potential therapeutics has been researched for some time.

View Article and Find Full Text PDF

ADP-ribosylation factor-like protein 13B (ARL13B), a regulatory GTPase and guanine exchange factor (GEF), enriches in primary cilia and promotes tumorigenesis in part by regulating Smoothened (SMO), GLI, and Sonic Hedgehog (SHH) signaling. Gliomas with increased , , and expression are more aggressive, but the relationship to cilia is unclear. Previous studies have showed that increasing ARL13B in glioblastoma cells promoted ciliary SMO accumulation, independent of exogenous SHH addition.

View Article and Find Full Text PDF

Tumor models are critical for the preclinical testing of brain tumors in terms of exploring new, more efficacious treatments. With significant interest in immunotherapy, it is even more critical to have a consistent, clinically pertinent, immunocompetent mouse model to examine the tumor and immune cell populations in the brain and their response to treatment. While most preclinical models utilize orthotopic transplantation of established tumor cell lines, the modeling system presented here allows for a "personalized" representation of patient-specific tumor mutations in a gradual, yet effective development from DNA constructs inserted into dividing neural precursor cells (NPCs) in vivo.

View Article and Find Full Text PDF

Our group has developed several approaches for stable, non-viral integration of inducible transgenic elements into the genome of mammalian cells. Specifically, a piggyBac tetracycline-inducible genetic element of interest (pB-tet-GOI) plasmid system allows for stable piggyBac transposition-mediated integration into cells, identification of cells that have been transfected using a fluorescent nuclear reporter, and robust transgene activation or suppression upon the addition of doxycycline (dox) to the cell culture or the diet of the animal. Furthermore, the addition of luciferase downstream of the target gene allows for quantitative assessment of gene activity in a non-invasive manner.

View Article and Find Full Text PDF

Research models in cancer have greatly evolved in the last decade, with the advent of several new methods both in vitro and in vivo. While in vivo models remain the gold standard for preclinical studies, these methods present a series of disadvantages such as a high cost and long periods of time to produce results compared with in vitro models. We have previously developed a method named Mosaic Analysis by Dual Recombinase-mediated cassette exchange (MADR) that generates autochthonous gliomas in immunocompetent mice through the transgenesis of personalized driver mutations, which highly mimic the spatial and temporal tumor development of their human counterparts.

View Article and Find Full Text PDF

The combination of targeted therapy and immunotherapy in the treatment of metastatic renal cell carcinoma (mRCC) has significantly improved outcomes for many patients. There are multiple FDA-approved regimens for the frontline setting based on numerous randomized Phase III trials. Despite these efforts, there remains a conundrum of identifying a biomarker-driven approach for these patients and it is unclear how to predict which patients are most likely to respond to these agents.

View Article and Find Full Text PDF

Background: Glioblastoma is one of the most devastating cancer worldwide based on its locally aggressive behavior and because it cannot be cured by current therapies. Defects in alternative splicing process are frequent in cancer. Recently, we demonstrated that dysregulation of the spliceosome is directly associated with glioma development, progression, and aggressiveness.

View Article and Find Full Text PDF

The tumor microenvironment is a highly complex ecosystem of diverse cell types, which shape cancer biology and impact the responsiveness to therapy. Here, we analyze the microenvironment of esophageal squamous cell carcinoma (ESCC) using single-cell transcriptome sequencing in 62,161 cells from blood, adjacent nonmalignant and matched tumor samples from 11 ESCC patients. We uncover heterogeneity in most cell types of the ESCC stroma, particularly in the fibroblast and immune cell compartments.

View Article and Find Full Text PDF

Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies.

View Article and Find Full Text PDF

RNA molecules function as messenger RNAs (mRNAs) that encode proteins and noncoding transcripts that serve as adaptor molecules, structural components, and regulators of genome organization and gene expression. Their function and regulation are largely mediated by RNA binding proteins (RBPs). Here we present RNA proximity labelling (RPL), an RNA-centric method comprising the endonuclease-deficient Type VI CRISPR-Cas protein dCas13b fused to engineered ascorbate peroxidase APEX2.

View Article and Find Full Text PDF

Introduction: Down syndrome (DS) is the most common multiple malformation syndrome in humans and is associated with an increased risk of childhood malignancy, particularly leukemia. Incidence of brain tumors in patients with DS is limited to sporadic cases. We report the first case of a RELA fusion-positive ependymoma in a 3-year-old boy with DS.

View Article and Find Full Text PDF

Although obesity is one of the strongest risk factors for esophageal adenocarcinoma, the molecular mechanisms underlying this association remain unclear. We recently identified four esophageal adenocarcinoma-specific master regulator transcription factors (MRTF) ELF3, KLF5, GATA6, and EHF. In this study, gene-set enrichment analysis of both esophageal adenocarcinoma patient samples and cell line models unbiasedly underscores fatty acid synthesis as the central pathway downstream of three MRTFs (ELF3, KLF5, GATA6).

View Article and Find Full Text PDF

This protocol focuses on the cloning and stable integration of sequences of interest by the use of a mosaic analysis with dual recombinases (MADR) plasmid that includes fusion proteins or independent proteins under the control of 2A peptide or IRES elements. Additionally, we describe how to generate a neural stem cell culture from Gt(ROSA)26SortJ mice, and validate the MADR plasmids and by neonatal mouse brain electroporation. This protocol can be generalized to analyze any transgenic element using MADR technology.

View Article and Find Full Text PDF

Mosaic analysis by dual recombinase-mediated cassette exchange (MADR) is a technology that allows stable and locus-specific integration of transgenic elements into recipient cells carrying loxP and FRT sites. Nevertheless, most cell lines lack these recombination-specific sites. This protocol describes a method to introduce the minimum requirements into cells, leading to the generation of primary MADR recipient cells or MADR "Proxy" cells.

View Article and Find Full Text PDF

Glioblastomas remain the deadliest brain tumour, with a dismal ∼12-16-month survival from diagnosis. Therefore, identification of new diagnostic, prognostic and therapeutic tools to tackle glioblastomas is urgently needed. Emerging evidence indicates that the cellular machinery controlling the splicing process (spliceosome) is altered in tumours, leading to oncogenic splicing events associated with tumour progression and aggressiveness.

View Article and Find Full Text PDF

In situ transgenesis methods such as viruses and electroporation can rapidly create somatic transgenic mice but lack control over copy number, zygosity, and locus specificity. Here we establish mosaic analysis by dual recombinase-mediated cassette exchange (MADR), which permits stable labeling of mutant cells expressing transgenic elements from precisely defined chromosomal loci. We provide a toolkit of MADR elements for combination labeling, inducible and reversible transgene manipulation, VCre recombinase expression, and transgenesis of human cells.

View Article and Find Full Text PDF

Background: The mechanisms by which primary cilia affect glioma pathogenesis are unclear. Depending on the glioma cell line, primary cilia can promote or inhibit tumor development. Here, we used piggyBac-mediated transgenesis to generate patient-derived glioblastoma (GBM) cell lines that stably express Arl13b:GFP in their cilia.

View Article and Find Full Text PDF

Background: Inflammation has been proposed to contribute to the decline in adult hippocampal neurogenesis. Proinflammatory cytokines activate transcription of chemokine growth-regulated oncogene α (Gro1) in human and murine hippocampal neuronal progenitor cells (NPC). The goal of this study was to investigate the effects of Gro1 on hippocampal neurogenesis in the presence of inflammation.

View Article and Find Full Text PDF