The use of metal and semimetal van der Waals contacts for 2D semiconducting devices has led to remarkable device optimizations. In comparison with conventional thin-film metal deposition, a reduction in Fermi level pinning at the contact interface for van der Waals contacts results in, generally, lower contact resistances and higher mobilities. Van der Waals contacts also lead to Schottky barriers that follow the Schottky-Mott rule, allowing barrier estimates on material properties alone.
View Article and Find Full Text PDFWe present a method to anneal devices based on graphite films on paper and polycarbonate substrates. The devices are created using four different methods: spray-on films, graphite pencil-drawn films, liquid-phase exfoliated graphite films, and graphite powder abrasion-applied films. We characterize the optical properties of the films before and after laser annealing and report the two-terminal resistance of the devices for increased laser power density.
View Article and Find Full Text PDFWe demonstrate the fabrication of field-effect transistors based on single-layer MoS and a thin layer of BaTiO (BTO) dielectric, isolated from its parent epitaxial template substrate. Thin BTO provides an ultrahigh-κ gate dielectric effectively screening Coulomb scattering centers. These devices show mobilities substantially larger than those obtained with standard SiO dielectrics and comparable with values obtained with hexagonal boron nitride, a dielectric employed for fabrication of high-performance two-dimensional (2D) based devices.
View Article and Find Full Text PDFMachine learning methods are changing the way data is analyzed. One of the most powerful and widespread applications of these techniques is in image segmentation wherein disparate objects of a digital image are partitioned and classified. Here we present an image segmentation program incorporating a series of unsupervised clustering algorithms for the automatic thickness identification of two-dimensional materials from digital optical microscopy images.
View Article and Find Full Text PDFThe transition metal thiophosphates MPS_{3} (M=Mn, Fe, Ni) are a class of van der Waals stacked insulating antiferromagnets that can be exfoliated down to the ultrathin limit. MnPS_{3} is particularly interesting because its Néel ordered state breaks both spatial-inversion and time-reversal symmetries, allowing for a linear magnetoelectric phase that is rare among van der Waals materials. However, it is unknown whether this unique magnetic structure of bulk MnPS_{3} remains stable in the ultrathin limit.
View Article and Find Full Text PDFCarbon nanotubes continue to be model systems for studies of confinement and interactions. This is particularly true in the case of so-called "ultraclean" carbon nanotube devices offering the study of quantum dots with extremely low disorder. The quality of such systems, however, has increasingly revealed glaring discrepancies between experiment and theory.
View Article and Find Full Text PDFTwo-dimensional (2D) semiconducting materials are particularly appealing for many applications. Although theory predicts a large number of 2D materials, experimentally only a few of these materials have been identified and characterized comprehensively in the ultrathin limit. Lead iodide, which belongs to the transition metal halides family and has a direct bandgap in the visible spectrum, has been known for a long time and has been well characterized in its bulk form.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) are a promising material for high-performance electronics beyond silicon. But unlike silicon, the nature of the transport band gap in CNTs is not fully understood. The transport gap in CNTs is predicted to be strongly driven by electron-electron (e-e) interactions and correlations, even at room temperature.
View Article and Find Full Text PDFSuperconductors containing magnetic impurities exhibit intriguing phenomena derived from the competition between Cooper pairing and Kondo screening. At the heart of this competition are the Yu-Shiba-Rusinov (Shiba) states which arise from the pair breaking effects a magnetic impurity has on a superconducting host. Hybrid superconductor-molecular junctions offer unique access to these states but the added complexity in fabricating such devices has kept their exploration to a minimum.
View Article and Find Full Text PDFThe fabrication of van der Waals heterostructures, artificial materials assembled by individual stacking of 2D layers, is among the most promising directions in 2D materials research. Until now, the most widespread approach to stack 2D layers relies on deterministic placement methods, which are cumbersome and tend to suffer from poor control over the lattice orientations and the presence of unwanted interlayer adsorbates. Here, we present a different approach to fabricate ultrathin heterostructures by exfoliation of bulk franckeite which is a naturally occurring and air stable van der Waals heterostructure (composed of alternating SnS-like and PbS-like layers stacked on top of each other).
View Article and Find Full Text PDFThe ability to exfoliate layered materials down to the single layer limit has presented the opportunity to understand how a gradual reduction in dimensionality affects the properties of bulk materials. Here we use this top-down approach to address the problem of superconductivity in the two-dimensional limit. The transport properties of electronic devices based on 2H tantalum disulfide flakes of different thicknesses are presented.
View Article and Find Full Text PDFWe present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures.
View Article and Find Full Text PDFGraphene electrodes are promising candidates to improve reproducibility and stability in molecular electronics through new electrode-molecule anchoring strategies. Here we report sequential electron transport in few-layer graphene transistors containing individual curcuminoid-based molecules anchored to the electrodes via π-π orbital bonding. We show the coexistence of inelastic co-tunneling excitations with single-electron transport physics due to an intermediate molecule-electrode coupling; we argue that an intermediate electron-phonon coupling is the origin of these vibrational-assisted excitations.
View Article and Find Full Text PDFWe present photoluminescence (PL) spectroscopy measurements of single-layer MoSe2 as a function of uniform uniaxial strain. A simple clamping and bending method is described that allows for application of uniaxial strain to layered, 2D materials with strains up to 1.1% without slippage.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2015
Titanium trisulfide (TiS3) has recently attracted the interest of the 2D community because it presents a direct bandgap of ∼1.0 eV, shows remarkable photoresponse, and has a predicted carrier mobility up to 10000 cm(2) V(-1) s(-1). However, a study of the vibrational properties of TiS3, relevant to understanding the electron-phonon interaction that can be the main mechanism limiting the charge carrier mobility, is still lacking.
View Article and Find Full Text PDFThe semiconducting p-n junction is a simple device structure with great relevance for electronic and optoelectronic applications. The successful integration of low-dimensional materials in electronic circuits has opened the way forward for producing gate-tunable p-n junctions. In that context, we present here an organic (Cu-phthalocyanine)-2D layered material (MoS2) hybrid p-n junction with both gate-tunable diode characteristics and photovoltaic effect.
View Article and Find Full Text PDFTwo-dimensional (2D) materials have attracted a great deal of interest in recent years. This family of materials allows for the realization of versatile electronic devices and holds promise for next-generation (opto)electronics. Their electronic properties strongly depend on the number of layers, making them interesting from a fundamental standpoint.
View Article and Find Full Text PDFControl over the morphology of TiS3 is demonstrated by synthesizing 1D nanoribbons and 2D nanosheets. The nanosheets can be exfoliated down to a single layer. Through extensive characterization of the two morphologies, differences in the electronic properties are found and attributed to a higher density of sulphur vacancies in nanosheets, which, according to density functional theory calculations, leads to an n-type doping.
View Article and Find Full Text PDFThe possibility to make 10 nm scale, and low-disorder, suspended graphene devices would open up many possibilities to study and make use of strongly coupled quantum electronics, quantum mechanics, and optics. We present a versatile method, based on the electromigration of gold-on-graphene bow-tie bridges, to fabricate low-disorder suspended graphene junctions and quantum dots with lengths ranging from 6 nm up to 55 nm. We control the length of the junctions, and shape of their gold contacts by adjusting the power at which the electromigration process is allowed to avalanche.
View Article and Find Full Text PDFThe scanning tunneling microscope (STM) is a powerful tool for studying the electronic properties at the atomic level, however, it is of relatively small scanning range and the fact that it can only operate on conducting samples prevents its application to study heterogeneous samples consisting of conducting and insulating regions. Here we present a long-range scanning tunneling microscope capable of detecting conducting micro and nanostructures on insulating substrates using a technique based on the capacitance between the tip and the sample and performing STM studies.
View Article and Find Full Text PDF