African swine fever virus is a complex double-stranded DNA virus that exhibits tropism for cells of the mononuclear phagocytic system. Virus replication is a multi-step process that involves the nucleus of the host cell as well the formation of large perinuclear sites where progeny virions are assembled prior to transport to, and budding through, the plasma membrane. Like many viruses, African swine fever virus reorganises the cellular architecture to facilitate its replication and has evolved multiple mechanisms to avoid the potential deleterious effects of host cell stress response pathways.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a lethal disease in pigs that has grave socio-economic implications worldwide. For the development of vaccines against the African swine fever virus (ASFV), immunogenic antigens that generate protective immune responses need to be identified. There are over 150 viral proteins-many of which are uncharacterized-and humoral immunity to ASFV has not been closely examined.
View Article and Find Full Text PDFAfrican swine fever is a devastating disease of domestic swine and wild boar caused by a large double-stranded DNA virus that encodes for more than 150 open reading frames. There is no licensed vaccine for the disease and the most promising current candidates are modified live viruses that have been attenuated by deletion of virulence factors. Like many viruses African swine fever virus significantly alters the host cell machinery to benefit its replication and viral genes that modify host pathways represent promising targets for development of gene deleted vaccines.
View Article and Find Full Text PDFCultivated maize () has retained much of the genetic diversity of its wild ancestors. Here, we performed nontargeted liquid chromatography-mass spectrometry metabolomics to analyze the metabolomes of the 282 maize inbred lines in the Goodman Diversity Panel. This analysis identified a bimodal distribution of foliar metabolites.
View Article and Find Full Text PDFThe acquisition and maintenance of individual competency is a critical component of effective emergency care systems. This article summarizes consensus working group deliberations and recommendations focusing on the topic "Simulation-based education to ensure provider competency within the healthcare system." The authors presented this work for discussion and feedback at the 2017 Academic Emergency Medicine Consensus Conference on "Catalyzing System Change Through Healthcare Simulation: Systems, Competency, and Outcomes," held on May 16, 2017, in Orlando, Florida.
View Article and Find Full Text PDFOver the past decade, emergency medicine (EM) took a lead role in healthcare simulation in part due to its demands for successful interprofessional and multidisciplinary collaboration, along with educational needs in a diverse array of cognitive and procedural skills. Simulation-based methodologies have the capacity to support training and research platforms that model micro-, meso-, and macrosystems of healthcare. To fully capitalize on the potential of simulation-based research to improve emergency healthcare delivery will require the application of rigorous methods from engineering, social science, and basic science disciplines.
View Article and Find Full Text PDFObjectives: All residency programs in the United States are required to report their residents' progress on the milestones to the Accreditation Council for Graduate Medical Education (ACGME) biannually. Since the development and institution of this competency-based assessment framework, residency programs have been attempting to ascertain the best ways to assess resident performance on these metrics. Simulation was recommended by the ACGME as one method of assessment for many of the milestone subcompetencies.
View Article and Find Full Text PDFIntroduction: We aimed to determine the publication rate for abstracts presented at the International Meeting for Simulation in Healthcare (IMSH) and the time between abstract presentation and publication. We also aimed to describe the study features influencing subsequent publication and the relationship between these features and journal impact factors (IFs).
Methods: All types of accepted abstracts from the 2012 and 2013 IMSH were reviewed.
Introduction: Simulation-based research (SBR) is rapidly expanding but the quality of reporting needs improvement. For a reader to critically assess a study, the elements of the study need to be clearly reported. Our objective was to develop reporting guidelines for SBR by creating extensions to the Consolidated Standards of Reporting Trials (CONSORT) and Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statements.
View Article and Find Full Text PDFBackground: Simulation-based research (SBR) is rapidly expanding but the quality of reporting needs improvement. For a reader to critically assess a study, the elements of the study need to be clearly reported. Our objective was to develop reporting guidelines for SBR by creating extensions to the Consolidated Standards of Reporting Trials (CONSORT) and Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statements.
View Article and Find Full Text PDFBackground: There are not enough clinical data from rare critical events to calculate statistics to decide if the management of actual events might be below what could reasonably be expected (i.e. was an outlier).
View Article and Find Full Text PDF