Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration causing hypoxemia and death in a substantial number of affected individuals. Loss of endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment into the injured lung are recognized mechanisms that contribute to the progression of ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative and positive bacteria or viruses (e.
View Article and Find Full Text PDFCaveolae are prominent plasmalemmal invaginations in endothelial cells, especially in the lung vasculature, which comprises a vast surface area. PV1 (plasmalemmal vesicle-associated protein-1), a 60-kD glycoprotein expressed in endothelial cells, is essential for generating spoke-like diaphragmatic structures that span the neck region of endothelial caveolae. However, their role in caveolae-mediated uptake and endothelial-barrier function is unknown.
View Article and Find Full Text PDFTranscytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles.
View Article and Find Full Text PDFCardiovascular adaptations to exercise, particularly at the individual level, remain poorly understood. Previous group level research suggests the relationship between cardiac output and oxygen consumption ([Formula: see text]-[Formula: see text]) is unaffected by training as submaximal [Formula: see text] is unchanged. We recently identified substantial inter-individual variation in the exercise [Formula: see text]-[Formula: see text] relationship that was correlated to stroke volume (SV) as opposed to arterial oxygen content.
View Article and Find Full Text PDFThe current study examined the contribution of central and peripheral adaptations to changes in maximal oxygen uptake (V̇O) following sprint interval training (SIT). Twenty-three males completed 4 weekly SIT sessions (8 × 20-s cycling bouts at ∼170% of work rate at V̇O, 10-s recovery) for 4 weeks. Following completion of training, the relationship between changes in V̇O and changes in central (cardiac output) and peripheral (arterial-mixed venous oxygen difference (a-vOdiff), muscle capillary density, oxidative capacity, fibre-type distribution) adaptations was determined in all participants using correlation analysis.
View Article and Find Full Text PDFBackground: Cardiovascular diseases play a major role in morbidity and mortality in the earlier stages of COPD. We hypothesized that systemic vascular dysfunction would be present even in patients who are currently considered at "low-risk" for negative cardiovascular outcomes, i.e.
View Article and Find Full Text PDFConsiderable interindividual differences in the Q˙-V˙O2 relationship during exercise have been documented but implications for submaximal exercise tolerance have not been considered. We tested the hypothesis that these interindividual differences were associated with differences in exercising muscle deoxygenation and ratings of perceived exertion (RPE) across a range of submaximal exercise intensities. A total of 31 (21 ± 3 years) healthy recreationally active males performed an incremental exercise test to exhaustion 24 h following a resting muscle biopsy.
View Article and Find Full Text PDFHeightened oxidative stress is implicated in the progressive impairment of skeletal muscle vascular and mitochondrial function in chronic obstructive pulmonary disease (COPD). Whether accumulation of reactive oxygen species contributes to exercise intolerance in the early stages of COPD is unknown. The purpose of the present study was to determine the effects of oral antioxidant treatment with -acetylcysteine (NAC) on respiratory, cardiovascular, and locomotor muscle function and exercise tolerance in patients with mild COPD.
View Article and Find Full Text PDFThere is growing evidence that emphysema on thoracic computed tomography (CT) is associated with poor exercise tolerance in COPD patients with only mild-to-moderate airflow obstruction. We hypothesized that an excessive ventilatory response to exercise (ventilatory inefficiency) would underlie these abnormalities. In a prospective study, 19 patients (FEV = 82 ± 13%, 12 Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 1) and 26 controls underwent an incremental exercise test.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
January 2017
Endothelial dysfunction and reduced nitric oxide (NO) signaling are key abnormalities leading to skeletal muscle oxygen delivery-utilization mismatch and poor physical capacity in patients with heart failure with reduced ejection fraction (HFrEF). Oral inorganic nitrate supplementation provides an exogenous source of NO that may enhance locomotor muscle function and oxygenation with consequent improvement in exercise tolerance in HFrEF. Thirteen patients (left ventricular ejection fraction ≤40%) were enrolled in a double-blind, randomized crossover study to receive concentrated nitrate-rich (nitrate) or nitrate-depleted (placebo) beetroot juice for 9 days.
View Article and Find Full Text PDFA 56-year-old white woman was referred to the pulmonary clinic for evaluation of unexplained shortness of breath. She enjoyed good health until 3 months prior to this visit when she reported experiencing recurrent episodes of shortness of breath and oppressive retrosternal chest discomfort with radiation to the neck. Episodes lasting 5 to 10 min often occurred at rest and were inconsistently related to physical activity.
View Article and Find Full Text PDFImpairment in oxygen (O2) delivery to the central nervous system ("brain") and skeletal locomotor muscle during exercise has been associated with central and peripheral neuromuscular fatigue in healthy humans. From a clinical perspective, impaired tissue O2 transport is a key pathophysiological mechanism shared by cardiopulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF). In addition to arterial hypoxemic conditions in COPD, there is growing evidence that cerebral and muscle blood flow and oxygenation can be reduced during exercise in both isolated COPD and CHF.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions with restricted interests and repetitive behaviors (RRBs). RRBs can severely limit daily living and be particularly stressful to family members. To date, there are limited options for treating this feature in ASD.
View Article and Find Full Text PDFAutism spectrum disorders (ASD) represent a class of neurodevelopmental disorders characterized by impairments in social interaction, verbal and non-verbal communication, as well as restricted interests and repetitive behavior. This latter class of symptoms often includes features such as compulsive behaviors and resistance to change. The BTBR T+ tf/J mouse strain has been used as an animal model to investigate the social communication and restricted interest features in ASD.
View Article and Find Full Text PDFAlthough β-dicarbonyl compounds are regularly employed as Michael donors, intermediates arising from the Michael addition of unsaturated β-ketoesters to α,β-unsaturated aldehydes are susceptible to multiple subsequent reaction pathways. We designed cyclic unsaturated β-ketoester substrates that enabled the development of the first diphenyl prolinol silyl ether catalyzed Michael-Michael cascade reaction initiated by a β-dicarbonyl Michael donor to form cyclohexene products. The reaction conditions we developed for this Michael-Michael cascade reaction were also amenable to a variety of linear unsaturated β-ketoester substrates, including some of the same linear unsaturated β-ketoester substrates that were previously ineffective in Michael-Michael cascade reactions.
View Article and Find Full Text PDF