Heterozygous truncating variants in the sarcomere protein titin (TTN) are the most common genetic cause of heart failure. To understand mechanisms that regulate abundant cardiomyocyte TTN expression we characterized highly conserved intron 1 sequences that exhibited dynamic changes in chromatin accessibility during differentiation of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CMs). Homozygous deletion of these sequences in mice caused embryonic lethality while heterozygous mice demonstrated allele-specific reduction in Ttn expression.
View Article and Find Full Text PDFTrisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD).
View Article and Find Full Text PDFBlood flow is critical for heart valve formation, and cellular mechanosensors are essential to translate flow into transcriptional regulation of development. Here, we identify a role for primary cilia in the spatial regulation of cushion formation, the first stage of valve development, by regionally controlling endothelial to mesenchymal transition (EndoMT) via modulation of . We find that high shear stress intracardiac regions decrease endocardial ciliation over cushion development, correlating with KLF4 downregulation and EndoMT progression.
View Article and Find Full Text PDFRare coding mutations cause ∼45% of congenital heart disease (CHD). Noncoding mutations that perturb cis-regulatory elements (CREs) likely contribute to the remaining cases, but their identification has been problematic. Using a lentiviral massively parallel reporter assay (lentiMPRA) in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we functionally evaluated 6,590 noncoding de novo variants (ncDNVs) prioritized from the whole-genome sequencing of 750 CHD trios.
View Article and Find Full Text PDFUnderstanding how the atrial and ventricular heart chambers maintain distinct identities is a prerequisite for treating chamber-specific diseases. Here, we selectively knocked out (KO) the transcription factor in the atrial working myocardium to evaluate its requirement for atrial identity. Atrial inactivation downregulated atrial cardiomyocyte (aCM) selective gene expression.
View Article and Find Full Text PDFThe early limb bud consists of mesenchymal limb progenitors derived from the lateral plate mesoderm (LPM). The LPM also gives rise to the mesodermal components of the flank and neck. However, the cells at these other levels cannot produce the variety of cell types found in the limb.
View Article and Find Full Text PDFBackground: Many cardiovascular disorders propel the development of advanced heart failure that necessitates cardiac transplantation. When treatable causes are excluded, studies to define causes are often abandoned, resulting in a diagnosis of end-stage idiopathic cardiomyopathy. We studied whether DNA sequence analyses could identify unrecognized causes of end-stage nonischemic cardiomyopathy requiring heart transplantation and whether the prevalence of genetic causes differed from ambulatory cardiomyopathy cases.
View Article and Find Full Text PDFOncolytic viruses (OVs) have emerged as a clinical therapeutic modality potentially effective for cancers that evade conventional therapies, including central nervous system malignancies. Rationally designed combinatorial strategies can augment the efficacy of OVs by boosting tumor-selective cytotoxicity and modulating the tumor microenvironment (TME). Photodynamic therapy (PDT) of cancer not only mediates direct neoplastic cell death but also primes the TME to sensitize the tumor to secondary therapies, allowing for the combination of two potentially synergistic therapies with broader targets.
View Article and Find Full Text PDFBackground: Known genetic causes of congenital heart disease (CHD) explain <40% of CHD cases, and interpreting the clinical significance of variants with uncertain functional impact remains challenging. We aim to improve diagnostic classification of variants in patients with CHD by assessing the impact of noncanonical splice region variants on RNA splicing.
Methods: We tested de novo variants from trio studies of 2649 CHD probands and their parents, as well as rare (allele frequency, <2×10) variants from 4472 CHD probands in the Pediatric Cardiac Genetics Consortium through a combined computational and in vitro approach.
Understanding how the atrial and ventricular chambers of the heart maintain their distinct identity is a prerequisite for treating chamber-specific diseases. Here, we selectively inactivated the transcription factor in the atrial working myocardium of the neonatal mouse heart to show that it is required to maintain atrial identity. Atrial inactivation downregulated highly chamber specific genes such as and , and conversely, increased the expression of ventricular identity genes including .
View Article and Find Full Text PDFBackground: Dilated cardiomyopathy (DCM) was considered a monogenetic disease that can be caused by over 60 genes. Evidence suggests that the combination of multiple pathogenic variants leads to greater disease severity and earlier onset. So far, not much is known about the prevalence and disease course of multiple pathogenic variants in patients with DCM.
View Article and Find Full Text PDFFront Cell Infect Microbiol
February 2023
Introduction: Chagas cardiomyopathy, a disease caused by () infection, is a major contributor to heart failure in Latin America. There are significant gaps in our understanding of the mechanism for infection of human cardiomyocytes, the pathways activated during the acute phase of the disease, and the molecular changes that lead to the progression of cardiomyopathy.
Methods: To investigate the effects of on human cardiomyocytes during infection, we infected induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) with the parasite and analyzed cellular, molecular, and metabolic responses at 3 hours, 24 hours, and 48 hours post infection (hpi) using transcriptomics (RNAseq), proteomics (LC-MS), and metabolomics (GC-MS and Seahorse) analyses.
Dominant missense pathogenic variants in cardiac myosin heavy chain cause hypertrophic cardiomyopathy (HCM), a currently incurable disorder that increases risk for stroke, heart failure and sudden cardiac death. In this study, we assessed two different genetic therapies-an adenine base editor (ABE8e) and a potent Cas9 nuclease delivered by AAV9-to prevent disease in mice carrying the heterozygous HCM pathogenic variant myosin R403Q. One dose of dual-AAV9 vectors, each carrying one half of RNA-guided ABE8e, corrected the pathogenic variant in ≥70% of ventricular cardiomyocytes and maintained durable, normal cardiac structure and function.
View Article and Find Full Text PDFBackground: encodes α-kinase 3, a muscle-specific protein of unknown function. loss-of-function variants cause cardiomyopathy with distinctive clinical manifestations in both children and adults, but the molecular functions of ALPK3 remain poorly understood.
Methods: We explored the putative kinase activity of ALPK3 and the consequences of damaging variants using isogenic human induced pluripotent stem cell-derived cardiomyocytes, mice, and human patient tissues.
This protocol describes a robust pipeline for simultaneously analyzing multiple samples by single-nucleus (sn)RNA-seq. cDNA obtained from each single sample are labeled with the same lipid-coupled oligonucleotide barcode (10X Genomics). Nuclei from as many as 12 individual samples can be pooled together and simultaneously processed for cDNA library construction and subsequent DNA sequencing.
View Article and Find Full Text PDFApproximately 20% of meningiomas are not benign (higher grade) and tend to relapse after surgery and radiation therapy. Malignant (anaplastic) meningioma (MM) is a minor subset of high-grade meningioma that is lethal with no effective treatment options currently. Oncolytic herpes simplex virus (oHSV) is a powerful anti-cancer modality that induces both direct cell death and anti-tumor immunity, and has shown activity in preclinical models of MM.
View Article and Find Full Text PDFPurpose: Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown.
Methods: We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology.
Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states.
View Article and Find Full Text PDFMyocardial fibrosis is a key pathologic feature of hypertrophic cardiomyopathy (HCM). However, the fibrotic pathways activated by HCM-causing sarcomere protein gene mutations are poorly defined. Because lysophosphatidic acid is a mediator of fibrosis in multiple organs and diseases, we tested the role of the lysophosphatidic acid pathway in HCM.
View Article and Find Full Text PDFMicrotia is a congenital malformation that encompasses mild hypoplasia to complete loss of the external ear, or pinna. Although the contribution of genetic variation and environmental factors to microtia remains elusive, Amerindigenous populations have the highest reported incidence. Here, using both transmission disequilibrium tests and association studies in microtia trios (parents and affected child) and microtia cohorts enrolled in Latin America, we map an ∼10-kb microtia locus (odds ratio = 4.
View Article and Find Full Text PDFThe well-established manifestation of mitochondrial mutations in functional cardiac disease (e.g., mitochondrial cardiomyopathy) prompted the hypothesis that mitochondrial DNA (mtDNA) sequence and/or copy number (mtDNAcn) variation contribute to cardiac defects in congenital heart disease (CHD).
View Article and Find Full Text PDFProgressive loss of cardiac systolic function in arrhythmogenic cardiomyopathy (ACM) has recently gained attention as an important clinical consideration in managing the disease. However, the mechanisms leading to reduction in cardiac contractility are poorly defined. Here, we use CRISPR gene editing to generate human induced pluripotent stem cells (iPSCs) that harbor plakophilin-2 truncating variants (tv), the most prevalent ACM-linked mutations.
View Article and Find Full Text PDFBackground: Heterozygous truncating variants cause 10% to 20% of idiopathic dilated cardiomyopathy (DCM). Although variants which disrupt canonical splice signals (ie, invariant dinucleotide of the splice donor site, invariant dinucleotide of the splice acceptor site) at exon-intron junctions are readily recognized as truncating variants, the effects of other nearby sequence variations on splicing and their contribution to disease is uncertain.
Methods: Rare variants of unknown significance located in the splice regions of highly expressed exons from 203 DCM cases, 3329 normal subjects, and clinical variant databases were identified.