Protonic ceramic electrochemical cells (PCECs) offer promising paths for energy storage and conversion. Despite considerable achievements made, PCECs still face challenges such as physiochemical compatibility between componenets and suboptimal solid-solid contact at the interfaces between the electrolytes and electrodes. In this study, a novel approach is proposed that combines in situ electrochemical characterization of interfacial electrical sensor embedded PCECs and machine learning to quantify the contributions of different cell components to total degradation, as well as to predict the remaining useful life.
View Article and Find Full Text PDFThin solid oxide films are crucial for developing high-performance solid oxide-based electrochemical devices aimed at decarbonizing the global energy system. Among various methods, ultrasonic spray coating (USC) can provide the throughput, scalability, quality consistency, roll-to-roll compatibility, and low material waste necessary for scalable production of large-sized solid oxide electrochemical cells. However, due to the large number of USC parameters, systematic parameter optimization is required to ensure optimal settings.
View Article and Find Full Text PDFPorous electrodes that conduct electrons, protons, and oxygen ions with dramatically expanded catalytic active sites can replace conventional electrodes with sluggish kinetics in protonic ceramic electrochemical cells. In this work, a strategy is utilized to promote triple conduction by facilitating proton conduction in praseodymium cobaltite perovskite through engineering non-equivalent B-site Ni/Co occupancy. Surface infrared spectroscopy is used to study the dehydration behavior, which proves the existence of protons in the perovskite lattice.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2017
Nanoporous carbon was synthesized from microalgae as a promising electrode material for electric double layer capacitors due to its large specific surface area and controllable pore structures. The pore textural properties of the algae-derived-carbon (ADC) samples were measured by N adsorption and desorption at 77 K. The performance of the activated carbon (AC) as supercapacitor electrodes was determined by the cyclic voltammetry and galvanostatic charge/discharge tests.
View Article and Find Full Text PDFAlthough anthropogenic emissions of greenhouse gases (GHG: CO2, CH4, N2O) are unequivocally tied to climate change, natural systems such as forests have the potential to affect GHG concentration in the atmosphere. Our study reports GHG emissions as CO2, CH4, N2O, and CO2eq fluxes across a range of landscape hydrogeomorphic classes (wetlands, riparian areas, lower hillslopes, upper hillslopes) in a forested watershed of the Northeastern USA and assesses the usability of the topographic wetness index (TWI) as a tool to identify distinct landscape geomorphic classes to aid in the development of GHG budgets at the soil atmosphere interface at the watershed scale. Wetlands were hot spots of GHG production (in CO2eq) in the landscape owing to large CH4 emission.
View Article and Find Full Text PDF