Publications by authors named "Joshua G Philips"

Gene technology regulators receive applications seeking permission for the environmental release of genetically modified (GM) plants, many of which possess beneficial traits such as improved production, enhanced nutrition and resistance to drought, pests and diseases. The regulators must assess the risks to human and animal health and to the environment from releasing these GM plants. One such consideration, of many, is the likelihood and potential consequence of the introduced or modified DNA being transferred to other organisms, including people.

View Article and Find Full Text PDF

•In contrast to the prior voluntary system, since 2001, gene technology in Australia has been regulated under a legislated national Gene Technology Regulatory Scheme which is administered by the Gene Technology Regulator.•The Scheme provides science-based assessment of the potential risks of gene technology to the health and safety of people and the environment.•It complements the role of the Australian Therapeutic Goods Administration which regulates all therapeutic products in Australia to ensure they are safe and effective.

View Article and Find Full Text PDF

Background: Ascorbate is a powerful antioxidant in plants and an essential micronutrient for humans. The GDP-L-galactose phosphorylase (GGP) gene encodes the rate-limiting enzyme of the L-galactose pathway-the dominant ascorbate biosynthetic pathway in plants-and is a promising gene candidate for increasing ascorbate in crops. In addition to transcriptional regulation, GGP production is regulated at the translational level through an upstream open reading frame (uORF) in the long 5'-untranslated region (5'UTR).

View Article and Find Full Text PDF

has been foundational in the development of transgenic plants for both agricultural biotechnology and plant molecular research. However, the transformation efficiency and level of transgene expression obtained for any given construct can be highly variable. These inefficiencies often require screening of many lines to find one with consistent and heritable transgene expression.

View Article and Find Full Text PDF

A decade ago, the value of Nicotiana benthamiana as a tool for plant molecular biologists was beginning to be appreciated. Scientists were using it to study plant-microbe and protein-protein interactions, and it was the species of choice with which to activate plasmid-encoded viruses, screen for gene functions with virus-induced gene silencing (VIGS), and transiently express genes by leaf agroinfiltration. However, little information about the species' origin, diversity, genetics, and genomics was available, and biologists were asking the question of whether N.

View Article and Find Full Text PDF

Nicotiana benthamiana is employed around the world for many types of research and one transgenic line has been used more extensively than any other. This line, 16c, expresses the Aequorea victoria green fluorescent protein (GFP), highly and constitutively, and has been a major resource for visualising the mobility and actions of small RNAs. Insights into the mechanisms studied at a molecular level in N.

View Article and Find Full Text PDF

Identification and validation of suitable reference genes that exhibit robust transcriptional stability across many sample types is an absolute requirement of all qRT-PCR experiments. Often, however, only small numbers of reference genes, validated across limited sample types, are available for non-model species. This points to a clear need to assess and validate a wider range of potential reference genes than is currently available.

View Article and Find Full Text PDF