Stem Cells Transl Med
October 2021
In its 2019 report, The Skilled Technical Workforce: Crafting America's Science and Engineering Enterprise, the National Science Board recommended a national charge to create a skilled technical workforce (STW) driven by science and engineering. The RegenMed Development Organization (ReMDO), through its RegeneratOR Workforce Development Initiative, has taken on this challenge beginning with an assessment of regenerative medicine (RM) biomanufacturing knowledge, skills, and abilities (KSAs) needed for successful employment. While STW often refers only to associate degree or other prebaccalaureate prepared technicians, the RM biomanufacturing survey included responses related to baccalaureate prepared technicians.
View Article and Find Full Text PDFStem Cells Transl Med
August 2018
Regenerative medicine is poised to become a significant industry within the medical field. As such, the development of strategies and technologies for standardized and automated regenerative medicine clinical manufacturing has become a priority. An industry-driven roadmap toward industrial scale clinical manufacturing was developed over a 3-year period by a consortium of companies with significant investment in the field of regenerative medicine.
View Article and Find Full Text PDFAt present, no effective cure or prophylaxis exists for Alzheimer's disease. Symptomatic treatments are modestly effective and offer only temporary benefit. Advances in induced pluripotent stem cell (iPSC) technology have the potential to enable development of so-called disease-in-a-dish personalised models to study disease mechanisms and reveal new therapeutic approaches, and large panels of iPSCs enable rapid screening of potential drug candidates.
View Article and Find Full Text PDFThere is great need to develop more predictive drug discovery tools to identify new therapies to treat diseases of the central nervous system (CNS). Current nonpluripotent stem cell-based models often utilize non-CNS immortalized cell lines and do not enable the development of personalized models of disease. In this review, we discuss why in vitro models are necessary for translational research and outline the unique advantages of induced pluripotent stem cell (iPSC)-based models over those of current systems.
View Article and Find Full Text PDFStem Cells Transl Med
December 2014
Induced pluripotent stem cells (iPSCs) offer an opportunity to delve into the mechanisms underlying development while also affording the potential to take advantage of a number of naturally occurring mutations that contribute to either disease susceptibility or resistance. Just as with any new field, several models of screening are being explored, and innovators are working on the most efficient methods to overcome the inherent limitations of primary cell screens using iPSCs. In the present review, we provide a background regarding why iPSCs represent a paradigm shift for central nervous system (CNS) disease modeling.
View Article and Find Full Text PDFIdentifying mechanisms to enhance neuroprotection holds tremendous promise in developing new treatments for neuropsychiatric and neurodegenerative diseases. We sought to determine the potential role for microRNAs (miRNAs) in neuroprotection following neuronal death. A neuronal culture system of rat cerebellar granule cells was used to examine miRNA expression changes following glutamate-induced excitotoxicity and neuroprotective treatments.
View Article and Find Full Text PDFThe mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders.
View Article and Find Full Text PDFStroke is a devastating brain injury that is a leading cause of adult disability with limited treatment options. Using a rat model of middle cerebral artery occlusion (MCAO) to induce cerebral ischemia, we profiled microRNAs (miRNAs), small non-protein coding RNAs, in the ischemic cortex. Many miRNAs were confirmed by qPCR to be robustly upregulated 24 hours following MCAO surgery including miR-155, miR-297a, miR-466f, miR-466h, and miR-1224.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is a critical site for intracellular calcium storage as well as protein synthesis, folding, and trafficking. Disruption of these processes is gaining support for contributing to heritable vulnerability of certain diseases. Here, we investigated Bax inhibitor 1 (BI-1), an anti-apoptotic protein that primarily resides in the ER and associates with B-cell lymphoma 2 (Bcl-2) and Bcl-XL, as an affective resiliency factor through its modulation of calcium homeostasis.
View Article and Find Full Text PDFInhibition of glycogen synthase kinase-3 (GSK-3) by pharmacological tools can produce antidepressant-like effects in rodents. However, the GSK-3 isoform(s) and brain region(s) involved in regulating these behavioural effects remain elusive. We studied the effects of bilateral intra-hippocampal injections of lentivirus-expressing short-hairpin (sh)RNA targeting GSK-3β on behavioural performance in mice subjected to chronic stress.
View Article and Find Full Text PDFLithium has been the gold standard in the treatment of bipolar disorder (BPD) for 60 y. Like lithium, glycogen synthase kinase 3 (GSK-3) inhibitors display both antimanic-like and antidepressant-like effects in some animal models. However, the molecular mechanisms of both lithium and GSK-3 inhibitors remain unclear.
View Article and Find Full Text PDFBipolar disorder (BPD) is a devastating psychiatric illness marked by recurrent episodes of mania and depression. While the underlying pathophysiology of BPD remains elusive, an abnormal hypothalamic-pituitary-adrenal (HPA) axis and dysfunctional glucocorticoid receptor (GR) signaling are considered hallmarks. This review will examine how targeting resiliency signaling cascades at the cellular level may serve as a mechanism to treat BPD.
View Article and Find Full Text PDFNeuromolecular Med
December 2009
Psychiatric illnesses are disabling disorders with poorly understood underlying pathophysiologies. However, it is becoming increasingly evident that these illnesses result from disruptions across whole cellular networks rather than any particular monoamine system. Recent evidence continues to support the hypothesis that these illnesses arise from impairments in cellular plasticity cascades, which lead to aberrant information processing in the circuits that regulate mood, cognition, and neurovegetative functions (sleep, appetite, energy, etc.
View Article and Find Full Text PDFMicroRNAs (miRNAs) regulate messenger RNA (mRNA) translation in a sequence-specific manner and are emerging as critical regulators of central nervous system plasticity. We found hippocampal miRNA level changes following chronic treatment with mood stabilizers (lithium and valproate (VPA)). Several of these miRNAs were then confirmed by quantitative PCR: let-7b, let-7c, miR-128a, miR-24a, miR-30c, miR-34a, miR-221, and miR-144.
View Article and Find Full Text PDFRecent microarray studies with stringent validating criteria identified Bcl-2-associated athanogene (BAG1) as a target for the actions of medications that are mainstays in the treatment of bipolar disorder (BPD). BAG1 is a Hsp70/Hsc70-regulating cochaperone that also interacts with glucocorticoid receptors (GRs) and attenuates their nuclear trafficking and function. Notably, glucocorticoids are one of the few agents capable of triggering both depressive and manic episodes in patients with BPD.
View Article and Find Full Text PDFExercise has many health benefits, including antidepressant actions in depressed human subjects, but the mechanisms underlying these effects have not been elucidated. We used a custom microarray to identify a previously undescribed profile of exercise-regulated genes in the mouse hippocampus, a brain region implicated in mood and antidepressant response. Pathway analysis of the regulated genes shows that exercise upregulates a neurotrophic factor signaling cascade that has been implicated in the actions of antidepressants.
View Article and Find Full Text PDFKainic acid activates non-N-methyl-d-aspartate (NMDA) glutamate receptors where it increases synaptic activity resulting in seizures, neurodegeneration, and remodeling. We performed microarray analysis on rat hippocampal tissue following kainic acid treatment in order to study the signaling mechanisms underlying these diverse processes in an attempt to increase our current understanding of mechanisms contributing to such fundamental processes as neuronal protection and neuronal plasticity. The kainic acid-treated rats used in our array experiments demonstrated severe seizure behavior that was also accompanied by neuronal degeneration which is suggested by fluoro-jade B staining and anti-caspase-3 immunohistochemistry.
View Article and Find Full Text PDF