is a medically significant human pathogen and is an epithelial-tropic obligate intracellular parasite. Invasion of nonprofessional phagocytes represents a crucial step in the infection process and has likely promoted the evolution of a redundant mechanism and routes of entry. Like many other viral and invasive bacterial pathogens, manipulation of the host cell cytoskeleton represents a focal point in entry.
View Article and Find Full Text PDFThe translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes , we speculated as to what degree Tarp function contributes to 's ability to parasitize mammalian host cells. To address this question, we generated a complete deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in with wild-type or mutant alleles engineered to harbor in-frame domain deletions.
View Article and Find Full Text PDFIt has been appreciated for almost 20 years that members of the Chlamydiales possess a virulence-associated type III secretion mechanism. Given the obligate intracellular nature of these bacteria, defining exactly how type III secretion functions to promote pathogenesis has been challenging. We present a working model herein that is based on current evidence.
View Article and Find Full Text PDFDown syndrome (DS) is the most common genetic cause of intellectual disability and is primarily caused by the triplication of chromosome 21. The overexpression of amyloid precursor protein gene may be sufficient to drive Alzheimer's disease (AD) neuropathology that is observed in virtually all individuals with DS by the age of 40 years. There is relatively little information about inflammation in the DS brain and how the genetics of DS may alter inflammatory responses and modify the course of AD pathogenesis in this disorder.
View Article and Find Full Text PDFThe SOS response to DNA damage that induces up to 10% of the prokaryotic genome requires RecA action to relieve LexA transcriptional repression. In Acinetobacter species, which lack LexA, the error-prone polymerase accessory UmuDAb is instead required for ddrR induction after DNA damage, suggesting it might be a LexA analog. RNA-Seq experiments defined the DNA damage transcriptome (mitomycin C-induced) of wild type, recA and umuDAb mutant strains of both A.
View Article and Find Full Text PDF