Objectives: Previously, we showed that diazoxide (DZ), an effective ischemic preconditioning agent, protected rodent pancreas against ischemia-reperfusion injury. Here, we further investigate whether DZ supplementation to University of Wisconsin (UW) solution during pancreas procurement and islet isolation has similar cytoprotection in a preclinical nonhuman primate model.
Methods: Cynomolgus monkey pancreata were flushed with UW or UW + 150 μM DZ during procurement and preserved for 8 hours before islet isolation.
We present a novel pumpless microfluidic array driven by surface tension for studying the physiology of pancreatic islets of Langerhans. Efficient fluid flow in the array is achieved by surface tension-generated pressure as a result of inlet and outlet size differences. Flow properties are characterized in numerical simulation and further confirmed by experimental measurements.
View Article and Find Full Text PDFIn this study, we present a microfluidic array for high-resolution imaging of individual pancreatic islets. The device is based on hydrodynamic trapping principle and enables real-time analysis of islet cellular responses to insulin secretagogues. This device has significant advantages over our previously published perifusion chamber device including significantly increased analytical power and assay sensitivity, as well as improved spatiotemporal resolution.
View Article and Find Full Text PDFIn this article, we present a novel microfluidic islet array based on a hydrodynamic trapping principle. The lab-on-a-chip studies with live-cell multiparametric imaging allow understanding of physiological and pathophysiological changes of microencapsulated islets under hypoxic conditions. Using this microfluidic array and imaging analysis techniques, we demonstrate that hypoxia impairs the function of microencapsulated islets at the single islet level, showing a heterogeneous pattern reflected in intracellular calcium signaling, mitochondrial energetic, and redox activity.
View Article and Find Full Text PDFIslet transplantation is a promising therapy for type 1 diabetes mellitus; however, success rates in achieving both short- and long-term insulin independence are not consistent, due in part to inconsistent islet quality and quantity caused by the complex nature and multistep process of islet isolation and transplantation. Since the introduction of the Edmonton Protocol in 2000, more attention has been placed on preserving mitochondrial function as increasing evidences suggest that impaired mitochondrial integrity can adversely affect clinical outcomes. Some recent studies have demonstrated that it is possible to achieve islet cytoprotection by maintaining mitochondrial function and subsequently to improve islet transplantation outcomes.
View Article and Find Full Text PDFReliable long-term cell culture in microfluidic system is limited by air bubble formation and accumulation. In this study, we developed a bubble removal system capable of both trapping and discharging air bubbles in a consistent and reliable manner. Combined with PDMS (Polydimethylsiloxane) hydrophilic surface treatment and vacuum filling, a microfluidic perifusion system equipped with the bubble trap was successfully applied for long-term culture of mouse pancreatic islets with no bubble formation and no flow interruption.
View Article and Find Full Text PDFThis study explores a new class of duplex microfluidic device which utilizes a dual perifusion network to simultaneously perform live-cell optical imaging of physiological activities and study insulin release kinetics on two islet populations. This device also incorporates on-chip staggered herringbone mixers (SHMs) to increase mixing efficiency and facilitate the generation of user-defined chemical gradients. Mouse islets are used to simultaneously measure dynamic insulin release, changes in mitochondrial potentials, and calcium influx in response to insulin secretagogues (glucose and tolbutamide), and show a high signal-to-noise ratio and spatiotemporal resolution of all measured parameters for both perifusion chambers.
View Article and Find Full Text PDFBackground: The anatomical spatial distribution of microencapsulated islets transplanted into the peritoneal cavity of large animals remains a relatively unexplored area of study. In this study, we developed a new implantation approach using laparoscopy in order to avoid microcapsule amalgamation. This approach constitutes a clinically relevant method, which can be used to evaluate the distribution and in vivo biocompatibility of various types of transplanted microcapsules in the future.
View Article and Find Full Text PDFβ-cells respond to blood glucose by secreting insulin to maintain glucose homeostasis. Perifusion enables manipulation of biological and chemical cues in elucidating the mechanisms of β-cell physiology. Recently, microfluidic devices made of polydimethylsiloxane and Borofloat glass have been developed as miniaturized perifusion setups and demonstrated distinct advantages over conventional techniques in resolving rapid secretory and metabolic waveforms intrinsic to β-cells.
View Article and Find Full Text PDF