Publications by authors named "Joshua E Flack"

Production of cultivated meat requires defined medium formulations for the robust differentiation of myogenic cells into mature skeletal muscle fibres in vitro. Although these formulations can drive myogenic differentiation levels comparable to serum-starvation-based protocols, the resulting cultures are often heterogeneous, with a significant proportion of cells not participating in myofusion, limiting maturation of the muscle. To address this problem, we employed RNA sequencing to analyse heterogeneity in differentiating bovine satellite cells at single-nucleus resolution, identifying distinct cellular subpopulations including proliferative cells that fail to exit the cell cycle and quiescent 'reserve cells' that do not commit to myogenic differentiation.

View Article and Find Full Text PDF

Cultivated meat has the potential to revolutionize food production, but its progress is hindered by fundamental shortcomings of mammalian cells with respect to industrial-scale bioprocesses. Here, we discuss the essential role of cell line engineering in overcoming these limitations, highlighting the balance between the benefits of enhanced cellular traits and the associated regulatory and consumer acceptance challenges. We believe that careful selection of cell engineering strategies, including both genetic and non-genetic modifications, can address this trade-off and is essential to advancing the field.

View Article and Find Full Text PDF

Cultivated meat is a nascent technology that aims to create an environmentally and animal-friendly alternative to conventional meat. Producing skeletal muscle tissue in an animal-free system allowing for high levels of myofusion and maturation is important for the nutritional and sensorial value of cultivated meat. Alginate is an attractive biomaterial to support muscle formation as it is food-safe, sustainable and cheap and can be crosslinked using non-toxic methods.

View Article and Find Full Text PDF

Cultured meat is an emerging biotechnology that aims to produce meat from animal cell culture, rather than from the raising and slaughtering of livestock, on environmental and animal welfare grounds. The detailed understanding and accurate manipulation of cell biology are critical to the design of cultured meat bioprocesses. Recent years have seen significant interest in this field, with numerous scientific and commercial breakthroughs.

View Article and Find Full Text PDF

Cultured meat technologies leverage the proliferation and differentiation of animal-derived stem cells to produce edible tissues for human consumption in a sustainable fashion. However, skeletal muscle is a dynamic and highly complex tissue, involving the interplay of numerous mono- and multinucleated cells, including muscle fibers, satellite cells (SCs) and fibro-adipogenic progenitors (FAPs), and recreation of the tissue thus requires the characterization and manipulation of a broad range of cell types. Here, we use a single-cell RNA sequencing approach to characterize cellular heterogeneity within bovine muscle and muscle-derived cell cultures over time.

View Article and Find Full Text PDF

Cultured meat is an emerging technology that could address environmental, health, and animal welfare concerns associated with meat production. Development of cultured meat represents an exciting challenge for cell biologists and engineers, but it requires effective, open approaches for knowledge sharing to establish a fertile scientific field alongside a competitive industry.

View Article and Find Full Text PDF

Cultured meat is an emergent technology with the potential for significant environmental and animal welfare benefits. Accurate mimicry of traditional meat requires fat tissue; a key contributor to both the flavour and texture of meat. Here, we show that fibro-adipogenic progenitor cells (FAPs) are present in bovine muscle, and are transcriptionally and immunophenotypically distinct from satellite cells.

View Article and Find Full Text PDF

Cultured meat production requires the robust differentiation of satellite cells into mature muscle fibres without the use of animal-derived components. Current protocols induce myogenic differentiation in vitro through serum starvation, that is, an abrupt reduction in serum concentration. Here we used RNA sequencing to investigate the transcriptomic remodelling of bovine satellite cells during myogenic differentiation induced by serum starvation.

View Article and Find Full Text PDF

Feedback control is a universal feature of cell signaling pathways. Naked/NKD is a widely conserved feedback regulator of Wnt signaling which controls animal development and tissue homeostasis. Naked/NKD destabilizes Dishevelled, which assembles Wnt signalosomes to inhibit the β-catenin destruction complex via recruitment of Axin.

View Article and Find Full Text PDF

Cultured meat is an emerging technology with the potential to solve huge challenges related to the environmental, ethical, and health implications of conventional meat production. Establishing the basic science of cultured meat has been the primary focus of the last decade but it is now feasible that cultured meat products will enter the market within the next 3 to 4 years. This proximity to market introduction demands an evaluation of aspects of the cultured meat production process that have not yet been outlined or discussed in significant detail.

View Article and Find Full Text PDF

Extracellular signals are transduced to the cell nucleus by effectors that bind to enhancer complexes to operate transcriptional switches. For example, the Wnt enhanceosome is a multiprotein complex associated with Wnt-responsive enhancers through T cell factors (TCF) and kept silent by Groucho/TLE co-repressors. Wnt-activated β-catenin binds to TCF to overcome this repression, but how it achieves this is unknown.

View Article and Find Full Text PDF

Gene expression is highly regulated at the step of transcription initiation, and transcription activators play a critical role in this process. RbpA, an actinobacterial transcription activator that is essential in Mycobacterium tuberculosis (Mtb), binds selectively to group 1 and certain group 2 σ-factors. To delineate the molecular mechanism of RbpA, we show that the Mtb RbpA σ-interacting domain (SID) and basic linker are sufficient for transcription activation.

View Article and Find Full Text PDF