Publications by authors named "Joshua Disatham"

A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered.

View Article and Find Full Text PDF

Recent advances in next-generation sequencing and data analysis have provided new gateways for identification of novel genome-wide genetic determinants governing tissue development and disease. These advances have revolutionized our understanding of cellular differentiation, homeostasis, and specialized function in multiple tissues. Bioinformatic and functional analysis of these genetic determinants and the pathways they regulate have provided a novel basis for the design of functional experiments to answer a wide range of long-sought biological questions.

View Article and Find Full Text PDF

Purpose: Transition from lens epithelial cells to lens fiber cell is accompanied by numerous changes in gene expression critical for lens transparency. We identify expression patterns of highly prevalent genes including ubiquitous and enzyme crystallins in the embryonic day 13 chicken lens.

Methods: Embryonic day 13 chicken lenses were dissected into central epithelial cell (EC), equatorial epithelial cell (EQ), cortical fiber cell (FP), and nuclear fiber cell (FC) compartments.

View Article and Find Full Text PDF

Background: Methylation at cytosines (mCG) is a well-known regulator of gene expression, but its requirements for cellular differentiation have yet to be fully elucidated. A well-studied cellular differentiation model system is the eye lens, consisting of a single anterior layer of epithelial cells that migrate laterally and differentiate into a core of fiber cells. Here, we explore the genome-wide relationships between mCG methylation, chromatin accessibility and gene expression during differentiation of eye lens epithelial cells into fiber cells.

View Article and Find Full Text PDF

Background: During eye lens development the embryonic vasculature regresses leaving the lens without a direct oxygen source. Both embryonically and throughout adult life, the lens contains a decreasing oxygen gradient from the surface to the core that parallels the natural differentiation of immature surface epithelial cells into mature core transparent fiber cells. These properties of the lens suggest a potential role for hypoxia and the master regulator of the hypoxic response, hypoxia-inducible transcription factor 1 (HIF1), in the regulation of genes required for lens fiber cell differentiation, structure and transparency.

View Article and Find Full Text PDF

A hallmark feature of lens development and differentiation is the complete elimination of organelles from the center of the eye lens. A long unanswered question in lens biology is what are the mechanisms that control the elimination of organelles during the terminal remodeling program to form mature lens fiber cells? Recent advances have expanded our understanding of these mechanisms including newly discovered signaling pathways, proteasomal regulators, autophagy proteins, transcription factors and the hypoxic environment of the lens itself. These recent discoveries suggest that distinct mechanisms coordinate the elimination of the nucleus, mitochondria, endoplasmic reticulum and Golgi apparatus during lens fiber cell differentiation.

View Article and Find Full Text PDF

Formation of the eye lens depends on the continuous differentiation of lens epithelial cells into lens fiber cells. To attain their mature structure and transparent function, nascent lens fiber cells must complete a precise cellular remodeling program hallmarked by the complete elimination of organelles to form the core lens organelle-free zone (OFZ). Lacking a blood supply, the lens resides in a hypoxic environment that results in a decreasing oxygen concentration from the lens surface to the lens core.

View Article and Find Full Text PDF

Changes in chromatin accessibility regulate the expression of multiple genes by controlling transcription factor access to key gene regulatory sequences. Here, we sought to establish a potential function for altered chromatin accessibility in control of key gene expression events during lens cell differentiation by establishing genome-wide chromatin accessibility maps specific for four distinct stages of lens cell differentiation and correlating specific changes in chromatin accessibility with genome-wide changes in gene expression. ATAC sequencing was employed to generate chromatin accessibility profiles that were correlated with the expression profiles of over 10,000 lens genes obtained by high-throughput RNA sequencing at the same stages of lens cell differentiation.

View Article and Find Full Text PDF