Publications by authors named "Joshua Dian"

As real time data processing is integrated with medical care for traumatic brain injury (TBI) patients, there is a requirement for devices to have digital output. However, there are still many devices that fail to have the required hardware to export real time data into an acceptable digital format or in a continuously updating manner. This is particularly the case for many intravenous pumps and older technological systems.

View Article and Find Full Text PDF

Current understanding of the impact that sedative agents have on neurovascular coupling, cerebral blood flow (CBF) and cerebrovascular response remains uncertain. One confounding factor regarding the impact of sedative agents is the depth of sedation, which is often determined at the bedside using clinical examination scoring systems. Such systems do not objectively account for sedation depth at the neurovascular level.

View Article and Find Full Text PDF

Intravenous phenylephrine (PE) is utilized commonly in critical care for cardiovascular support. Its impact on the cerebrovasculature is unclear and its use may have important implications during states of critical neurological illness. The aim of this study was to perform a scoping review of the literature on the cerebrovascular/cerebral blood flow (CBF) effects of PE in traumatic brain injury (TBI), evaluating both animal models and human studies.

View Article and Find Full Text PDF

Objective: Chronic subdural hematoma (CSDH) is a common and debilitating neurological condition whose treatments, including burr hole drainage and craniotomy, suffer from high rates of recurrence and complication. Embolization of the middle meningeal artery (EMMA) is a promising minimally invasive approach to manage CSDH in a broad set of patients.

Methods: To evaluate the efficacy and safety of EMMA, a database search was conducted including the terms "subdural hematoma; embolization; embolized; middle meningeal" was performed and yielded a total of 260 results.

View Article and Find Full Text PDF

The impact of vasopressor and sedative drugs on cerebrovascular reactivity in traumatic brain injury (TBI) remains unclear. The aim of this study was to evaluate the impact of changes of doses of commonly administered sedation (i.e.

View Article and Find Full Text PDF

Intravenous propofol, fentanyl, and midazolam are utilized commonly in critical care for metabolic suppression and anesthesia. The impact of propofol, fentanyl, and midazolam on cerebrovasculature and cerebral blood flow (CBF) is unclear in traumatic brain injury (TBI) and may carry important implications, as care is shifting to focus on cerebrovascular reactivity monitoring/directed therapies. The aim of this study was to perform a scoping review of the literature on the cerebrovascular/CBF effects of propofol, fentanyl, and midazolam in human patients with moderate/severe TBI and animal models with TBI.

View Article and Find Full Text PDF

Intravenous norepinephrine (NE) is utilized commonly in critical care for cardiovascular support. NE's impact on cerebrovasculature is unclear and may carry important implications during states of critical neurological illness. The aim of the study was to perform a scoping review of the literature on the cerebrovascular/cerebral blood flow (CBF) effects of NE.

View Article and Find Full Text PDF

Background: Intravenous hypertonic saline is utilized commonly in critical care for treatment of acute or refractory elevations of intracranial pressure (ICP) in traumatic brain injury (TBI) patients. Though there is a clear understanding of the general physiological effects of a hypertonic saline solution over long periods of time, smaller epoch effects of hypertonic saline (HTS) have not been thoroughly analyzed. The aim of this study was to perform a direct evaluation of the high-frequency response of HTS on the cerebrovascular physiological responses in TBI.

View Article and Find Full Text PDF

Background: Impaired cerebrovascular reactivity after traumatic brain injury (TBI) in adults is emerging as an important prognostic factor, with strong independent association with 6-month outcomes. To date, it is unknown if impaired cerebrovascular reactivity during the acute phase is associated with ongoing impaired continuously measured cerebrovascular reactivity in the long-term, and if such measures are associated with clinical phenotype at those points in time.

Objective: We describe a prospective pilot study to assess the use of near-infrared spectroscopy (NIRS) to derive continuous measures of cerebrovascular reactivity during the acute and long-term phases of TBI in adults.

View Article and Find Full Text PDF

Background: Pressure reactivity index (PRx) has emerged as a means to continuously monitor cerebrovascular reactivity in traumatic brain injury (TBI). However, other intracranial pressure (ICP)-based continuous metrics exist, and may have advantages over PRx. The goal of this study was to perform a scoping overview of the literature on non-PRx ICP-based continuous cerebrovascular reactivity metrics in adult TBI.

View Article and Find Full Text PDF

Activation of γ-aminobutyric acid (GABA) receptors have been associated with the onset of epileptiform events. To investigate if a causal relationship exists between GABA receptor activation and ictal event onset, we activated inhibitory GABAergic networks in the superficial layer (2/3) of the somatosensory cortex during hyperexcitable conditions using optogenetic techniques in mice expressing channelrhodopsin-2 in all GABAergic interneurons. We found that a brief 30ms light pulse reliably triggered either an interictal-like event (IIE) or ictal-like ("ictal") event in the in vitro cortical 4-Aminopyridine (4-AP) slice model.

View Article and Find Full Text PDF

In patients with intractable epilepsy, surgical resection is a promising treatment; however, post surgical seizure freedom is contingent upon accurate identification of the seizure onset zone (SOZ). Identification of the SOZ in extratemporal epilepsy requires invasive intracranial EEG (iEEG) recordings as well as resource intensive and subjective analysis by epileptologists. Expert inspection yields inconsistent localization of the SOZ which leads to comparatively poor post surgical outcomes for patients.

View Article and Find Full Text PDF

Pathological high-frequency oscillations (HFOs) (80-800 Hz) are considered biomarkers of epileptogenic tissue, but the underlying complex neuronal events are not well understood. Here, we identify and discuss several outstanding issues or conundrums in regards to the recording, analysis, and interpretation of HFOs in the epileptic brain to critically highlight what is known and what is not about these enigmatic events. High-frequency oscillations reflect a range of neuronal processes contributing to overlapping frequencies from the lower 80 Hz to the very fast spectral frequency bands.

View Article and Find Full Text PDF

We introduce a new 3-D flexible microelectrode array for high performance electrographic neural signal recording and stimulation. The microelectrode architecture maximizes the number of channels on each shank and minimizes its footprint. The electrode was implemented on flexible polyimide substrate using microfabrication and thin-film processing.

View Article and Find Full Text PDF

Intracortical microelectrodes play a prominent role in the operation of neural interfacing systems. They provide an interface for recording neural activities and modulating their behavior through electric stimulation. The performance of such systems is thus directly meliorated by advances in electrode technology.

View Article and Find Full Text PDF

Epilepsy is a dynamical disease and its effects are evident in over fifty million people worldwide. This study focused on objective classification of the multiple states involved in the brain's epileptiform activity. Four datasets from three different rodent hippocampal preparations were explored, wherein seizure-like-events (SLE) were induced by the perfusion of a low - Mg(2+) /high-K(+) solution or 4-Aminopyridine.

View Article and Find Full Text PDF