Publications by authors named "Joshua D Greenlee"

Mounting evidence suggests that the immune landscape within prostate tumors influences progression, metastasis, treatment response, and patient outcomes. In this study, we investigated the spatial density of innate immune cell populations within NOD.SCID orthotopic prostate cancer xenografts following microinjection of human DU145 prostate cancer cells.

View Article and Find Full Text PDF

Natural killer (NK) cell functionality is a strong indicator of favorable prognosis in cancer patients, making NK cells an appealing therapeutic target to prevent lymph node dissemination. We engineered liposomes that are conjugated with anti-CD335 antibodies for NK cell targeting, and the apoptotic ligand TRAIL to kill cancer cells. Liposomes were made using a thin film hydration method followed by extrusion to approximately 100 nm in diameter and conjugation of proteins via thiol-maleimide click chemistry.

View Article and Find Full Text PDF

Cells utilize calcium channels as one of the main signaling mechanisms to sense changes in the extracellular space and convert these changes to intracellular signals. Calcium regulates several key signaling networks, such as the induction of EMT. The current study expands on the understanding of how EMT is controlled via the mechanosensitive calcium channel Piezo1 in cancerous cells, which senses changes in the extracellular matrix stiffness.

View Article and Find Full Text PDF

While subcutaneous tumor models remain the standard for studying drug efficacy , these tumors rarely metastasize and lack physiological relevance due to differences in the tumor microenvironment, vascularization, immune landscape, and physiological cues associated with the organ of interest. Orthotopic tumors, grown from the organ corresponding with the cancer type, provide a more translational approach to study disease progression and drug efficacy. Utilization of a syngeneic mouse model allows for a complete immune landscape, key for adaptive immunotherapy studies.

View Article and Find Full Text PDF

Cancer cells must survive aberrant fluid shear stress (FSS) in the circulation to metastasize. Herein, we investigate the role that FSS has on colorectal cancer cell apoptosis, proliferation, membrane damage, calcium influx, and therapeutic sensitization. We tested this using SW480 (primary tumor) and SW620 cells (lymph node metastasis) derived from the same patient.

View Article and Find Full Text PDF

The role of intratumor heterogeneity is becoming increasingly apparent in part due to expansion in single cell technologies. Clinically, tumor heterogeneity poses several obstacles to effective cancer therapy dealing with biomarker variability and treatment responses. Matrix stiffening is known to occur during tumor progression and contribute to pathogenesis in several cancer hallmarks, including tumor angiogenesis and metastasis.

View Article and Find Full Text PDF

Background: T cell activation is a mechanical process as much as it is a biochemical process. In this study, we used a cone-and-plate viscometer system to treat Jurkat and primary human T cells with fluid shear stress (FSS) to enhance the activation of the T cells through mechanical means.

Results: The FSS treatment of T cells in combination with soluble and bead-bound CD3/CD28 antibodies increased the activation of signaling proteins essential for T cell activation, such as zeta-chain-associated protein kinase-70 (ZAP70), nuclear factor of activated T cells (NFAT), nuclear factor kappa B (NF-κB), and AP-1 (activator protein 1).

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a leading cause of cancer death, and its mortality is associated with metastasis and chemoresistance. We demonstrate that oxaliplatin-resistant CRC cells are sensitized to TRAIL-mediated apoptosis. Oxaliplatin-resistant cells exhibited transcriptional downregulation of caspase-10, but this had minimal effects on TRAIL sensitivity following CRISPR-Cas9 deletion of caspase-10 in parental cells.

View Article and Find Full Text PDF

Lipid rafts are tightly packed, cholesterol- and sphingolipid-enriched microdomains within the plasma membrane that play important roles in many pathophysiologic processes. Rafts have been strongly implicated as master regulators of signal transduction in cancer, where raft compartmentalization can promote transmembrane receptor oligomerization, shield proteins from enzymatic degradation, and act as scaffolds to enhance intracellular signaling cascades. Cancer cells have been found to exploit these mechanisms to initiate oncogenic signaling and promote tumor progression.

View Article and Find Full Text PDF

The majority of all cancers metastasize initially through the lymphatic system. Despite this, the mechanisms of lymphogenous metastasis remain poorly understood and understudied compared to hematogenous metastasis. Over the past few decades, microfluidic devices have been used to model pathophysiological processes and drug interactions in numerous contexts.

View Article and Find Full Text PDF

Cancer metastasis is the second leading cause of death in the United States. Despite its morbidity, metastasis is an inefficient process that few cells can survive. However, cancer cells can overcome these metastatic barriers via cellular responses to microenvironmental cues, such as through mechanotransduction.

View Article and Find Full Text PDF