A Correction to this paper has been published: https://doi.org/10.1038/s41591-020-01186-5.
View Article and Find Full Text PDFImproved understanding and management of COVID-19, a potentially life-threatening disease, could greatly reduce the threat posed by its etiologic agent, SARS-CoV-2. Toward this end, we have identified a core peripheral blood immune signature across 63 hospital-treated patients with COVID-19 who were otherwise highly heterogeneous. The signature includes discrete changes in B and myelomonocytic cell composition, profoundly altered T cell phenotypes, selective cytokine/chemokine upregulation and SARS-CoV-2-specific antibodies.
View Article and Find Full Text PDFBackground: Tumour-associated macrophages (TAMs) are often implicated in cancer progression but can also exert anti-tumour activities. Selective eradication of cancer-promoting (M2-like) TAM subsets is a highly sought-after goal. Here, we have devised a novel strategy to achieve selective TAM depletion, involving the use of T cell engagers to direct endogenous T cell cytotoxicity towards specific M2-like TAMs.
View Article and Find Full Text PDFThe translational success of oncolytic virotherapies would benefit from the widespread use of clinically relevant ex vivo models. Malignant ascites, an accumulation of fluid in the peritoneum due to disseminated cancer, recapitulates many features of the tumor microenvironment, making it a valuable model for studying oncolytic virus activity. Here, we describe a method for the separation and storage of cellular and acellular components of malignant ascites, followed by flow cytometric characterization of the cellular fraction.
View Article and Find Full Text PDF: Effective immunotherapy of stromal-rich tumors requires simultaneous targeting of cancer cells and immunosuppressive elements of the microenvironment. Here, we modified the oncolytic group B adenovirus enadenotucirev to express a stroma-targeted bispecific T-cell engager (BiTE). This BiTE bound fibroblast activation protein on cancer-associated fibroblasts (CAF) and CD3ε on T cells, leading to potent T-cell activation and fibroblast death.
View Article and Find Full Text PDFOncolytic viruses (OVs) are novel anticancer agents that combine direct cancer cell killing with the stimulation of antitumor immunity. In addition, OVs can be engineered to deliver biological therapeutics directly to tumors, offering unique opportunities to design multimodal anticancer strategies. Here, a case for arming OVs with bispecific T cell engagers (BiTEs) is put forward.
View Article and Find Full Text PDFOncolytic viruses exploit the cancer cell phenotype to complete their lytic life cycle, releasing progeny virus to infect nearby cells and repeat the process. We modified the oncolytic group B adenovirus EnAdenotucirev (EnAd) to express a bispecific single-chain antibody, secreted from infected tumour cells into the microenvironment. This bispecific T-cell engager (BiTE) binds to EpCAM on target cells and cross-links them to CD3 on T cells, leading to clustering and activation of both CD4 and CD8 T cells.
View Article and Find Full Text PDF