Publications by authors named "Joshua D Eaton"

RNA polymerase II (RNAPII) transcription initiates bidirectionally at many human protein-coding genes. Sense transcription usually dominates and leads to messenger RNA production, whereas antisense transcription rapidly terminates. The basis for this directionality is not fully understood.

View Article and Find Full Text PDF

The transcriptional termination of unstable non-coding RNAs (ncRNAs) is poorly understood compared to coding transcripts. We recently identified ZC3H4-WDR82 ("restrictor") as restricting human ncRNA transcription, but how it does this is unknown. Here, we show that ZC3H4 additionally associates with ARS2 and the nuclear exosome targeting complex.

View Article and Find Full Text PDF

Eukaryote-eukaryote endosymbiosis was responsible for the spread of chloroplast (plastid) organelles. Stability is required for the metabolic and genetic integration that drives the establishment of new organelles, yet the mechanisms that act to stabilize emergent endosymbioses-between two fundamentally selfish biological organisms-are unclear. Theory suggests that enforcement mechanisms, which punish misbehavior, may act to stabilize such interactions by resolving conflict.

View Article and Find Full Text PDF

Endosymbiosis was fundamental for the evolution of eukaryotic complexity. Endosymbiotic interactions can be dissected through forward- and reverse-genetic experiments, such as RNA-interference (RNAi). However, distinguishing small (s)RNA pathways in a eukaryote-eukaryote endosymbiotic interaction is challenging.

View Article and Find Full Text PDF

Many RNA polymerases terminate transcription using allosteric/intrinsic mechanisms, whereby protein alterations or nucleotide sequences promote their release from DNA. RNA polymerase II (Pol II) is somewhat different based on its behavior at protein-coding genes where termination additionally requires endoribonucleolytic cleavage and subsequent 5'→3' exoribonuclease activity. The Pol-II-transcribed small nuclear RNAs (snRNAs) also undergo endoribonucleolytic cleavage by the Integrator complex, which promotes their transcriptional termination.

View Article and Find Full Text PDF

RNA polymerase II (Pol II) transcribes hundreds of thousands of transcription units - a reaction always brought to a close by its termination. Because Pol II transcribes multiple gene types, its termination occurs in a variety of ways, with the polymerase being responsive to different inputs. Moreover, it is not just a default process occurring at the end of genes.

View Article and Find Full Text PDF

The allosteric and torpedo models have been used for 30 yr to explain how transcription terminates on protein-coding genes. The former invokes termination via conformational changes in the transcription complex and the latter proposes that degradation of the downstream product of poly(A) signal (PAS) processing is important. Here, we describe a single mechanism incorporating features of both models.

View Article and Find Full Text PDF

Cell-based studies of human ribonucleases traditionally rely on methods that deplete proteins slowly. We engineered cells in which the 3'→5' exoribonucleases of the exosome complex, DIS3 and EXOSC10, can be rapidly eliminated to assess their immediate roles in nuclear RNA biology. The loss of DIS3 has the greatest impact, causing the substantial accumulation of thousands of transcripts within 60 min.

View Article and Find Full Text PDF

Every transcription cycle ends in termination when RNA polymerase dissociates from the DNA. Although conceptually simple, the mechanism has proven somewhat elusive in eukaryotic systems. Gene-editing and high resolution polymerase mapping now offer clarification of important steps preceding transcriptional termination by RNA polymerase II in human cells.

View Article and Find Full Text PDF

Termination is a ubiquitous phase in every transcription cycle but is incompletely understood and a subject of debate. We used gene editing as a new approach to address its mechanism through engineered conditional depletion of the 5' → 3' exonuclease Xrn2 or the polyadenylation signal (PAS) endonuclease CPSF73 (cleavage and polyadenylation specificity factor 73). The ability to rapidly control Xrn2 reveals a clear and general role for it in cotranscriptional degradation of 3' flanking region RNA and transcriptional termination.

View Article and Find Full Text PDF

The affinity of epigallocatechin gallate (EGCG) for human serum albumin (HSA) was measured in physiological conditions using NMR and isothermal titration calorimetry (ITC). NMR estimated the (self-dissociation constant) of EGCG as 50 mM. NMR showed two binding events: strong (=1.

View Article and Find Full Text PDF