Phonon polaritons enable waveguiding and localization of infrared light with extreme confinement and low losses. The spatial propagation and spectral resonances of such polaritons are usually probed with complementary techniques such as near-field optical microscopy and far-field reflection spectroscopy. Here, infrared-visible sum-frequency spectro-microscopy is introduced as a tool for spectroscopic imaging of phonon polaritons.
View Article and Find Full Text PDFIn heterostructures made from polar materials, e.g., AlN-GaN-AlN, the nonequivalence of the two interfaces is long recognized as a critical aspect of their electronic properties; in that, they host different 2D carrier gases.
View Article and Find Full Text PDFPolariton canalization is characterized by intrinsic collimation of energy flow along a single crystalline axis. This optical phenomenon has been experimentally demonstrated at the nanoscale by stacking and twisting van der Waals (vdW) layers of α-MoO, by combining α-MoO and graphene, or by fabricating an h-BN metasurface. However, these material platforms have significant drawbacks, such as complex fabrication and high optical losses in the case of metasurfaces.
View Article and Find Full Text PDFExtended defects in wide-bandgap semiconductors have been widely investigated using techniques providing either spectroscopic or microscopic information. Nano-Fourier transform infrared spectroscopy (nano-FTIR) is a nondestructive characterization method combining FTIR with nanoscale spatial resolution (∼20 nm) and topographic information. Here, we demonstrate the capability of nano-FTIR for the characterization of extended defects in semiconductors by investigating an in-grown stacking fault (IGSF) present in a 4H-SiC epitaxial layer.
View Article and Find Full Text PDFHyperbolic phonon polaritons (HPhPs) can be supported in materials where the real parts of their permittivities along different directions are opposite in sign. HPhPs offer confinements of long-wavelength light to deeply subdiffractional scales, while the evanescent field allows for interactions with substrates, enabling the tuning of HPhPs by altering the underlying materials. Yet, conventionally used noble metal and dielectric substrates restrict the tunability of this approach.
View Article and Find Full Text PDFPolar dielectrics are key materials of interest for infrared (IR) nanophotonic applications due to their ability to host phonon-polaritons that allow for low-loss, subdiffractional control of light. The properties of phonon-polaritons are limited by the characteristics of optical phonons, which are nominally fixed for most "bulk" materials. Superlattices composed of alternating atomically thin materials offer control over crystal anisotropy through changes in composition, optical phonon confinement, and the emergence of new modes.
View Article and Find Full Text PDFSurface waves can lead to intriguing transport phenomena. In particular, surface phonon polaritons (SPhPs), which result from coupling between infrared light and optical phonons, have been predicted to contribute to heat conduction along polar thin films and nanowires. However, experimental efforts so far suggest only very limited SPhP contributions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
Intercalation is the process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on the intercalation of metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains challenging. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface.
View Article and Find Full Text PDFTechniques are well established for the control of nanoparticle shape and size in colloidal synthesis, but very little is understood about precursor interactions and their effects on the resultant crystalline phase. Here we show that oleate, a surface stabilizing ligand that is ubiquitous in nanocrystal synthesis, plays a large role in the mechanism of phase selection of various metal sulfide nanoparticles when thiourea is used as the sulfur source. Gas and solid-phase FTIR, C, and H NMR studies revealed that oleate and thiourea interact to produce oleamide which promotes the isomeric shift of thiourea into ammonium thiocyanate, a less reactive sulfur reagent.
View Article and Find Full Text PDFThe coupled interactions among the fundamental carriers of charge, heat, and electromagnetic fields at interfaces and boundaries give rise to energetic processes that enable a wide array of technologies. The energy transduction among these coupled carriers results in thermal dissipation at these surfaces, often quantified by the thermal boundary resistance, thus driving the functionalities of the modern nanotechnologies that are continuing to provide transformational benefits in computing, communication, health care, clean energy, power recycling, sensing, and manufacturing, to name a few. It is the purpose of this Review to summarize recent works that have been reported on ultrafast and nanoscale energy transduction and heat transfer mechanisms across interfaces when different thermal carriers couple near or across interfaces.
View Article and Find Full Text PDFHighly anisotropic materials show great promise for spatial control and the manipulation of polaritons. In-plane hyperbolic phonon polaritons (HPhPs) supported by α-phase molybdenum trioxide (MoO) allow for wave propagation with a high directionality due to the hyperbola-shaped isofrequency contour (IFC). However, the IFC prohibits propagations along the [001] axis, hindering information or energy flow.
View Article and Find Full Text PDFThe polar nature of calcite results in lattice vibrations that can be stimulated through gratings and nanostructures to design spatially and spectrally coherent thermal radiation patterns. In order to obtain optimal design control over such patterned materials, it is first necessary to understand the fundamental emissivity properties of the lattice vibrations themselves. Because calcite is a uniaxial material, when the optic axis (OA) is tilted with respect to the crystal surface, the surface wave solutions to Maxwell's equations and vibrational modes that are permitted will change due to the crystal's structural anisotropy.
View Article and Find Full Text PDFOne of the main bottlenecks in the development of terahertz (THz) and long-wave infrared (LWIR) technologies is the limited intrinsic response of traditional materials. Hyperbolic phonon polaritons (HPhPs) of van der Waals semiconductors couple strongly with THz and LWIR radiation. However, the mismatch of photon - polariton momentum makes far-field excitation of HPhPs challenging.
View Article and Find Full Text PDFHyperbolic phonon polaritons (HPhPs) are stimulated by coupling infrared (IR) photons with the polar lattice vibrations. Such HPhPs offer low-loss, highly confined light propagation at subwavelength scales with out-of-plane or in-plane hyperbolic wavefronts. For HPhPs, while a hyperbolic dispersion implies multiple propagating modes with a distribution of wavevectors at a given frequency, so far it has been challenging to experimentally launch and probe the higher-order modes that offer stronger wavelength compression, especially for in-plane HPhPs.
View Article and Find Full Text PDFWavelength-selective absorbers (WS-absorbers) are of interest for various applications, including chemical sensing and light sources. Lithography-free fabrication of WS-absorbers can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors (DBRs) on plasmonic materials. While multifrequency and nearly arbitrary spectra can be realized with TPPs via inverse design algorithms, demanding and thick DBRs are required for high quality-factors (Q-factors) and/or multiband TPP-absorbers, increasing the cost and reducing fabrication error tolerance.
View Article and Find Full Text PDFVarious optical crystals possess permittivity components of opposite signs along different principal directions in the mid-infrared regime, exhibiting exotic anisotropic phonon resonances. Such materials with hyperbolic polaritons-hybrid light-matter quasiparticles with open isofrequency contours-feature large-momenta optical modes and wave confinement that make them promising for nanophotonic on-chip technologies. So far, hyperbolic polaritons have been observed and characterized in crystals with high symmetry including hexagonal (boron nitride), trigonal (calcite) and orthorhombic (α-MoO or α-VO) crystals, where they obey certain propagation patterns.
View Article and Find Full Text PDFDielectric metasurfaces governed by bound states in the continuum (BIC) are actively investigated for achieving high-quality factors and strong electromagnetic field enhancements. Traditional approaches reported for tuning the performance of quasi-BIC metasurfaces include tuning the resonator size, period, and structure symmetry. Here we propose and experimentally demonstrate an alternative approach through engineering slots within a zigzag array of elliptical silicon resonators.
View Article and Find Full Text PDFOptical metasurfaces offer a compact platform for manipulation of the amplitude, phase, and polarization state of light. Independent control over these properties, however, is hindered by the symmetric transmission matrix associated with single-layer metasurfaces. Here, we utilize multilayer birefringent meta-optics to realize high-efficiency, independent control over the amplitude, phase, and polarization state of light.
View Article and Find Full Text PDFThe lattice symmetry of a crystal is one of the most important factors in determining its physical properties. Particularly, low-symmetry crystals offer powerful opportunities to control light propagation, polarization and phase. Materials featuring extreme optical anisotropy can support a hyperbolic response, enabling coupled light-matter interactions, also known as polaritons, with highly directional propagation and compression of light to deeply sub-wavelength scales.
View Article and Find Full Text PDFAs the length scales of materials decrease, the heterogeneities associated with interfaces become almost as important as the surrounding materials. This has led to extensive studies of emergent electronic and magnetic interface properties in superlattices. However, the interfacial vibrations that affect the phonon-mediated properties, such as thermal conductivity, are measured using macroscopic techniques that lack spatial resolution.
View Article and Find Full Text PDFLocalized surface phonon polaritons (LSPhPs) can be implemented to engineer light-matter interactions through nanoscale patterning for a range of midinfrared application spaces. However, the polar material systems studied to date have mainly focused on simple designs featuring a single element in the periodic unit cell. Increasing the complexity of the unit cell can serve to modify the resonant near-fields and intra- and inter-unit-cell coupling as well as to dictate spectral tuning in the far-field.
View Article and Find Full Text PDFWavelength-selective thermal emitters (WS-EMs) are of interest due to the lack of cost-effective, narrow-band sources in the mid- to long-wave infrared. WS-EMs can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors on metals. However, the design of multiple resonances is challenging as numerous structural parameters must be optimized simultaneously.
View Article and Find Full Text PDFThe mid-infrared (MIR) is an exciting spectral range that also hosts useful molecular vibrational fingerprints. There is a growing interest in nanophotonics operating in this spectral range, and recent advances in plasmonic research are aimed at enhancing MIR infrared nanophotonics. In particular, the design of hybrid plasmonic metasurfaces has emerged as a promising route to realize novel MIR applications.
View Article and Find Full Text PDFThe hyperbolic phonon polaritons supported in hexagonal boron nitride (hBN) with long scattering lifetimes are advantageous for applications such as super-resolution imaging via hyperlensing. Yet, hyperlens imaging is challenging for distinguishing individual and closely spaced objects and for correlating the complicated hyperlens fields with the structure of an unknown object underneath. Here, we make significant strides to overcome each of these challenges.
View Article and Find Full Text PDF