Trisomy 21 (Ts21) affects craniofacial precursors in individuals with Down syndrome (DS). The resultant craniofacial features in all individuals with Ts21 may significantly affect breathing, eating and speaking. Using mouse models of DS, we have traced the origin of DS-associated craniofacial abnormalities to deficiencies in neural crest cell (NCC) craniofacial precursors early in development.
View Article and Find Full Text PDFTrisomy 21 causes skeletal alterations in individuals with Down syndrome (DS), but the causative trisomic gene and a therapeutic approach to rescue these abnormalities are unknown. Individuals with DS display skeletal alterations including reduced bone mineral density, modified bone structure and distinctive facial features. Due to peripheral skeletal anomalies and extended longevity, individuals with DS are increasingly more susceptible to bone fractures.
View Article and Find Full Text PDFThe relationship between gene dosage imbalance and phenotypes associated with Trisomy 21, including the etiology of abnormal bone phenotypes linked to Down syndrome (DS), is not well understood. The Ts65Dn mouse model for DS exhibits appendicular skeletal defects during adolescence and adulthood but the developmental and genetic origin of these phenotypes remains unclear. It is hypothesized that the postnatal Ts65Dn skeletal phenotype originates during embryonic development and results from an increased Dyrk1a gene copy number, a gene hypothesized to play a critical role in many DS phenotypes.
View Article and Find Full Text PDFTrisomy 21 in humans causes cognitive impairment, craniofacial dysmorphology, and heart defects collectively referred to as Down syndrome. Yet, the pathophysiology of these phenotypes is not well understood. Craniofacial alterations may lead to complications in breathing, eating, and communication.
View Article and Find Full Text PDFDown syndrome (DS) is a genetic disorder resulting from trisomy 21 that causes cognitive impairment, low muscle tone and craniofacial alterations. Morphometric studies of the craniofacial and appendicular skeleton in individuals with DS suggest that bone development and homeostasis are affected by trisomy. The Ts65Dn mouse model has three copies of approximately half the genes found on human chromosome 21 and exhibits craniofacial skeletal and size differences similar to those observed in humans with DS.
View Article and Find Full Text PDFTrisomy 21 results in Down syndrome (DS) and causes phenotypes that may result from alterations of developmental processes. The Ts65Dn mouse is the most widely used genetic and phenotypic model for DS. We used over 1,500 offspring from Ts65Dn and two nontrisomic genetically similar control strains to investigate the influence of trisomy on developmental alterations and number of offspring.
View Article and Find Full Text PDF