Publications by authors named "Joshua Cutts"

In the canonical WNT signaling pathway, active WNT signaling results in the nuclear translocation of β-catenin where it regulates target gene expression. As a tool to understand these β-catenin DNA interactions, we used a CRISPR/Cas9 based approach to engineer a human embryonic stem cell line (hESC) harboring a 3X FLAG sequence fused to the C-terminus of β-catenin. Engineered cells displayed a characteristic hESC morphology, expressed pluripotency-associated markers, retained tri-lineage differentiation potential, and had a normal euploid karyotype.

View Article and Find Full Text PDF

Despite significant efforts in the study of cardiovascular diseases (CVDs), they persist as the leading cause of mortality worldwide. Considerable research into human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has highlighted their immense potential in the development of in vitro human cardiac tissues for broad mechanistic, therapeutic, and patient-specific disease modeling studies in the pursuit of CVD research. However, the relatively immature state of hPSC-CMs remains an obstacle in enhancing clinical relevance ofengineered cardiac tissue models.

View Article and Find Full Text PDF

Astrocytes comprise the most abundant cell type in the central nervous system (CNS) and play critical roles in maintaining neural tissue homeostasis. In addition, astrocyte dysfunction and death has been implicated in numerous neurological disorders such as multiple sclerosis, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). As such, there is much interest in using human pluripotent stem cell (hPSC)-derived astrocytes for drug screening, disease modeling, and regenerative medicine applications.

View Article and Find Full Text PDF

Despite therapeutic advances, neurodegenerative diseases and disorders remain some of the leading causes of mortality and morbidity in the United States. Therefore, cell-based therapies to replace lost or damaged neurons and supporting cells of the central nervous system (CNS) are of great therapeutic interest. To that end, human pluripotent stem cell (hPSC) derived neural progenitor cells (hNPCs) and their neuronal derivatives could provide the cellular 'raw material' needed for regenerative medicine therapies for a variety of CNS disorders.

View Article and Find Full Text PDF

The murine spinotrapezius is a thin, superficial skeletal support muscle that extends from T3 to L4, and is easily accessible via dorsal skin incision. Its unique anatomy makes the spinotrapezius useful for investigation of ischemic injury and subsequent microvascular remodeling. Here, we demonstrate an arteriolar ligation model in the murine spinotrapezius muscle that was developed by our research team and previously published(1-3).

View Article and Find Full Text PDF