Publications by authors named "Joshua C Saldivar"

Chromatin is organized into compartments enriched with functionally-related proteins driving non-linear biochemical activities. Some compartments, transcription foci, behave as liquid condensates. While the principles governing the enrichment of proteins within condensates are being elucidated, mechanisms that coordinate condensate dynamics with other nuclear processes like DNA replication have not been identified.

View Article and Find Full Text PDF

Breast cancers are known to be driven by the transcription factor estrogen receptor and its ligand estrogen. While the receptor's cis-binding elements are known to vary between tumors, heterogeneity of hormone signaling at a single-cell level is unknown. In this study, we systematically tracked estrogen response across time at a single-cell level in multiple cell line and organoid models.

View Article and Find Full Text PDF

Background: Senescent cells accumulate in tissues over time as part of the natural ageing process and the removal of senescent cells has shown promise for alleviating many different age-related diseases in mice. Cancer is an age-associated disease and there are numerous mechanisms driving cellular senescence in cancer that can be detrimental to recovery. Thus, it would be beneficial to develop a senolytic that acts not only on ageing cells but also senescent cancer cells to prevent cancer recurrence or progression.

View Article and Find Full Text PDF

Hypoxia, a hallmark feature of the tumor microenvironment, causes resistance to conventional chemotherapy, but was recently reported to synergize with poly(ADP-ribose) polymerase inhibitors (PARPis) in homologous recombination-proficient (HR-proficient) cells through suppression of HR. While this synergistic killing occurs under severe hypoxia (<0.5% oxygen), our study shows that moderate hypoxia (2% oxygen) instead promotes PARPi resistance in both HR-proficient and -deficient cancer cells.

View Article and Find Full Text PDF

USP7 inhibitors are gaining momentum as a therapeutic strategy to stabilize p53 through their ability to induce MDM2 degradation. However, these inhibitors come with an unexpected p53-independent toxicity, via an unknown mechanism. In this issue of The EMBO Journal, Galarreta et al report how inhibition of USP7 leads to re-distribution of PP2A from cytoplasm to nucleus and an increase of deleterious CDK1-dependent phosphorylation throughout the cell cycle, revealing a new regulatory mechanism for the progression of S-phase cells toward mitosis to maintain genomic integrity.

View Article and Find Full Text PDF

Replication stress underlies many genomic alterations in cancer cells. In this issue of Developmental Cell, Benedict et al. show that WAPL-dependent cohesin removal is needed to restart DNA synthesis at stalled forks and promote survival following replication stress, uncovering an unexpected link between stress and sister chromatid cohesion loss.

View Article and Find Full Text PDF

Genome instability is an enabling characteristic of cancer that facilitates the acquisition of oncogenic mutations that drive tumorigenesis. Underlying much of the instability in cancer is DNA replication stress, which causes both chromosome structural changes and single base-pair mutations. Common fragile sites are some of the earliest and most frequently altered loci in tumors.

View Article and Find Full Text PDF

The cell cycle is strictly ordered to ensure faithful genome duplication and chromosome segregation. Control mechanisms establish this order by dictating when a cell transitions from one phase to the next. Much is known about the control of the G/S, G/M, and metaphase/anaphase transitions, but thus far, no control mechanism has been identified for the S/G transition.

View Article and Find Full Text PDF

Rationale: Pulmonary arterial hypertension (PAH) is characterized by progressive narrowing of pulmonary arteries, resulting in right heart failure and death. BMPR2 (bone morphogenetic protein receptor type 2) mutations account for most familial PAH forms whereas reduced BMPR2 is present in many idiopathic PAH forms, suggesting dysfunctional BMPR2 signaling to be a key feature of PAH. Modulating BMPR2 signaling is therapeutically promising, yet how BMPR2 is downregulated in PAH is unclear.

View Article and Find Full Text PDF

One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected.

View Article and Find Full Text PDF

Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells.

View Article and Find Full Text PDF

FHIT is a genome caretaker gene that is silenced in >50% of cancers. Loss of Fhit protein expression promotes accumulation of DNA damage, affects apoptosis and epithelial-mesenchymal transition, though molecular mechanisms underlying these alterations have not been fully elucidated. Initiation of genome instability directly follows Fhit loss and the associated reduced Thymidine Kinase 1 (TK1) protein expression.

View Article and Find Full Text PDF
Article Synopsis
  • * Research on Fhit-deficient mouse models has shown a significant increase in genetic mutations, including single-base substitutions, which resembles mutation patterns found in human cancers like kidney, esophageal, and bladder cancers.
  • * The mutation patterns may be linked to an imbalance in nucleotide pools due to low thymidine kinase 1 expression, alongside evidence suggesting that specific treatments can induce further mutations in Fhit-deficient cells.
View Article and Find Full Text PDF

Juvenile ciliopathy syndromes that are associated with renal cysts and premature renal failure are commonly the result of mutations in the gene encoding centrosomal protein CEP290. In addition to centrosomes and the transition zone at the base of the primary cilium, CEP290 also localizes to the nucleus; however, the nuclear function of CEP290 is unknown. Here, we demonstrate that reduction of cellular CEP290 in primary human and mouse kidney cells as well as in zebrafish embryos leads to enhanced DNA damage signaling and accumulation of DNA breaks ex vivo and in vivo.

View Article and Find Full Text PDF

APOBEC cytidine deaminase activity is a major source of hypermutation in cancer. But previous studies have shown that the TC context signature of these enzymes is not observed in sizable fractions of cancers with overexpression of APOBEC, suggesting that cooperating factors that contribute to this mutagenesis should be identified. The fragile histidine triad protein (Fhit) is a tumor suppressor and DNA caretaker that is deleted or silenced in >50% of cancers.

View Article and Find Full Text PDF

The FHIT gene at FRA3B is one of the earliest and most frequently altered genes in the majority of human cancers. It was recently discovered that the FHIT gene is not the most fragile locus in epithelial cells, the cell of origin for most Fhit-negative cancers, eroding support for past claims that deletions at this locus are simply passenger events that are carried along in expanding cancer clones, due to extreme vulnerability to DNA damage rather than to loss of FHIT function. Indeed, recent reports have reconfirmed FHIT as a tumor suppressor gene with roles in apoptosis and prevention of the epithelial-mesenchymal transition.

View Article and Find Full Text PDF

Loss of Fhit expression, encoded at chromosome fragile site FRA3B, leads to increased replication stress, genome instability and accumulation of genetic alterations. We have proposed that Fhit is a genome 'caretaker' whose loss initiates genome instability in preneoplastic lesions. We have characterized allele copy number alterations and expression changes observed in Fhit-deficient cells in conjunction with alterations in cellular proliferation and exome mutations, using cells from mouse embryo fibroblasts (MEFs), mouse kidney, early and late after establishment in culture, and in response to carcinogen treatment.

View Article and Find Full Text PDF

Chromosomal positions of common fragile sites differ in lymphoblasts and fibroblasts, with positions dependent on the epigenetically determined density of replication origins at these loci. Because rearrangement of fragile loci and associated loss of fragile gene products are hallmarks of cancers, we aimed to map common fragile sites in epithelial cells, from which most cancers derive. Among the five most frequently activated sites in human epithelial cells were chromosome bands 2q33 and Xq22.

View Article and Find Full Text PDF

Genomic instability drives tumorigenesis, but how it is initiated in sporadic neoplasias is unknown. In early preneoplasias, alterations at chromosome fragile sites arise due to DNA replication stress. A frequent, perhaps earliest, genetic alteration in preneoplasias is deletion within the fragile FRA3B/FHIT locus, leading to loss of Fhit protein expression.

View Article and Find Full Text PDF

The fragile histidine triad protein, Fhit, has a number of reported tumor suppressive functions which include signaling of apoptosis in cancer cells in vitro and in vivo, modulation of the DNA damage response, down-regulation of target oncogene expression, suppression of tumor growth in vivo, and suppression of cancer cell invasion and metastasis. Most of these functions of Fhit have been observed on exogenous re-expression of Fhit in Fhit-negative cancer cells. However, little is known about the tumorigenic changes that occur in normal or precancerous cells following loss of Fhit expression.

View Article and Find Full Text PDF

Malignant gliomas are highly invasive and chemoresistant brain tumors with extremely poor prognosis. Targeting of the soluble factors that trigger invasion and resistance, therefore, could have a significant impact against the infiltrative glioma cells that are a major source of recurrence. Fibulin-3 is a matrix protein that is absent in normal brain but upregulated in gliomas and promotes tumor invasion by unknown mechanisms.

View Article and Find Full Text PDF

Listeria monocytogenes is a Gram-positive foodborne pathogen responsible for a severe disease occurring in immuno-compromised populations. Foodborne illness caused by L. monocytogenes is a serious public health concern because of the high associated mortality.

View Article and Find Full Text PDF

When DNA damage is detected, checkpoint signal networks are activated to stop the cell cycle, and DNA repair processes begin. Inhibitory compounds targeting components of DNA damage response pathways have been identified and are being used in clinical trials, in combination with chemotherapeutic agents, to enhance cancer therapy. Inhibitors of checkpoint kinases, Chk1 and Chk2, have been shown to sensitize tumor cells to DNA damaging agents, and treatment of BRCA1/2-deficient tumor cells, as well as triple negative breast cancers, with poly(ADP-ribose) polymerase (PARP) inhibitors has shown promise.

View Article and Find Full Text PDF