Somatosens Mot Res
September 2024
Purpose Of The Study: After two years of virtual meetings, the Barrels Meeting resumed to an in-person format on 10 and 11 November 2022 in La Jolla California.
Materials And Methods: The meeting focused on the rodent sensorimotor system, with a focus on integrated information from the cellular to the systems level. A series of invited and selected oral presentations were delivered in addition to a poster session.
: To summarize the state of research in the whisker-to-barrel sensorimotor system based on presentations at the Barrels meeting.: Host the 34th annual Barrels meeting was hosted virtually due to the ongoing Covid-19 pandemic.: The Barrels meeting annually focuses on the latest advances in the rodent sensorimotor research.
View Article and Find Full Text PDFFront Cell Neurosci
December 2021
Cellular structures provide the physical foundation for the functionality of the nervous system, and their developmental trajectory can be influenced by the characteristics of the external environment that an organism interacts with. Historical and recent works have determined that sensory experiences, particularly during developmental critical periods, are crucial for information processing in the brain, which in turn profoundly influence neuronal and non-neuronal cortical structures that subsequently impact the animals' behavioral and cognitive outputs. In this review, we focus on how altering sensory experience influences normal/healthy development of the central nervous system, particularly focusing on the cerebral cortex using the rodent whisker-to-barrel system as an illustrative model.
View Article and Find Full Text PDFThe 32nd Annual Barrels meeting was hosted at the Northwestern University Feinberg School of Medicine in Chicago, Illinois on October 17th and 18th, 2019. The annual meeting brings together researchers who utilize the rodent whisker-to-barrel system as a means to understand cortical function and development. This year's meeting focussed on social behaviours, development and cerebellar functions within the barrel system and beyond.
View Article and Find Full Text PDFThe barrel cortex is within the primary somatosensory cortex of the rodent, and processes signals from the vibrissae. Much focus has been devoted to the function of neurons, more recently, the role of glial cells in the processing of sensory input has gained increasing interest. Microglia are the principal immune cells of the nervous system that survey and regulate the cellular constituents of the dynamic nervous system.
View Article and Find Full Text PDFThe 31st annual Barrels meeting was held on the campus of the University of California, Riverside on the first two days of November, 2018. The meeting focuses on the whisker to cortical barrel pathway and the systems it impacts. This year's meeting focussed on the neural mechanisms of motor control, the functions of higher order thalamic nuclei and adaptable perception and decision-making.
View Article and Find Full Text PDFPerineuronal nets (PNNs) are a form of aggregate Extracellular Matrix (ECM) in the brain. Recent evidence suggests that the postnatal deposition of PNNs may play an active role in regulating neuroplasticity and, potentially, neurological disorders. Observations of high levels of PNN expression around somas, proximal dendrites, and axon initial segments of a subtype of neurons have also led to proposals that PNNs may modulate the intrinsic properties of the neurons they ensheathe.
View Article and Find Full Text PDFThe Barrels meeting annually brings together researchers focused on the rodent whisker to cortical barrel system prior to the Society for Neuroscience meeting. The 2017 meeting focused on the classification of cortical interneurons, the role interneurons have in shaping brain dynamics, and finally on the circuitry underlying oral sensations. The meeting highlighted the latest advancements in this rapidly advancing field.
View Article and Find Full Text PDFThe properties of specific cortical cell types enable greater understanding of how cortical microcircuits process and transmit sensory, motor, and cognitive information. Previous reports have characterized the intrinsic properties of the inverted pyramidal cell (IPC) where the most prominent dendrite is orientated towards the cortical white matter. Using whole cell patch clamp recordings from rat and mouse somatosensory cortex in conjunction with electric microstimulation of the white matter we characterized the synaptic inputs onto IPCs and the more common upright pyramidal cell (UPC) in the infragranular layers.
View Article and Find Full Text PDFJ Undergrad Neurosci Educ
November 2017
As part of a series of workshops on teaching neuroscience at the Society for Neuroscience annual meetings, William Grisham and Richard Olivo organized the 2016 workshop on "Teaching Neuroscience with Big Data." This article presents a summary of that workshop. Speakers provided overviews of open datasets that could be used in teaching undergraduate courses.
View Article and Find Full Text PDFBarrels XXIX brought together researchers focusing on the rodent barrel cortex and associated systems. The meeting revolved around three themes: thalamocortical interactions in motor control, touch in rodent, monkey, and humans, and the nature of the multisensory computations the brain makes. Over two days these topics were covered as well as many more presentations that focused on the physiology, behavior, and development of the rodent whisker-to-barrel cortex system.
View Article and Find Full Text PDFThe 28th annual Barrels meeting was held prior to the Society for Neuroscience meeting in October 2015 at the Northwestern University School of Law in Chicago, Illinois. The meeting brought together researchers focused on the rodent sensorimotor system. The meeting focused on modern techniques to decipher cortical circuits, social interactions among rodents, and decision-making.
View Article and Find Full Text PDFThe 27th annual Barrels meeting highlighted the latest advances in this rapidly growing field. The Barrels meeting annually focuses on the role of the posterior medial thalamus in somatosensation, dendritic processing, and the cortical dynamics involved during touch perception. Speakers utilized diverse molecular, physiological, computational techniques to understand the development, sensory processing, and motor commands that are involved with the rodent mystacial vibrissae.
View Article and Find Full Text PDFIt has been suggested that tissue-type plasminogen activator (tPA), a serine protease, plays a key role in regulating the extracellular matrix core proteins, thereby impacting the structural plasticity in the cerebral cortex. Much is known about its role in regulating plasticity in the visual cortex. However, its permissive role has not been demonstrated to generalize to other cerebral cortical areas.
View Article and Find Full Text PDFIn humans, the developmental origins of interneurons in the third trimester of pregnancy and the timing of completion of interneuron neurogenesis have remained unknown. Here, we show that the total and cycling Nkx2.1(+)and Dlx2(+)interneuron progenitors as well as Sox2(+)precursor cells were higher in density in the medial ganglionic eminence (MGE) compared with the lateral ganglionic eminence and cortical ventricular/subventricular zone (VZ/SVZ) of 16-35 gw subjects.
View Article and Find Full Text PDFJ Undergrad Neurosci Educ
April 2015
Laboratory instruction of neuroscience is often limited by the lack of physical resources and supplies (e.g., brains specimens, dissection kits, physiological equipment).
View Article and Find Full Text PDFCaffeine is the most popular psychoactive drug in the world which contributes to behavioral and metabolic changes when ingested. Within the central nervous system (CNS), caffeine has a high affinity for A1 and A2a adenosine receptors. Serving as an antagonist, caffeine affects the ability of adenosine to bind to these receptors.
View Article and Find Full Text PDFThe 26th annual Barrels meeting was convened on the campus of the University of California San Diego, not far from the shores of the Pacific Ocean. The meeting focused on three main themes: the structure and function of the thalamic reticular nucleus, the neurovasculature system and its role in brain metabolism, and the origins and functions of cortical GABAergic interneurons. In addition to the major themes, there were short talks, a data blitz, and a poster session which highlighted the diversity and quality of the research ongoing in the rodent whisker-to-barrel system.
View Article and Find Full Text PDFDendritic protrusions (spines and filopodia) are structural indicators of synapses that have been linked to neuronal learning and memory through their morphological alterations induced by development and experienced-dependent activities. Although previous studies have demonstrated that depriving sensory experience leads to structural changes in neocortical organization, the more subtle effects on dendritic protrusions remain unclear, mostly due to focus on only one specific cell type and/or age of manipulation. Here, we show that sensory deprivation induced by whisker trimming influences the dendritic protrusions of basilar dendrites located in thalamocortical recipient lamina (IV and VI) of the mouse barrel cortex in a layer-specific manner.
View Article and Find Full Text PDFCorticothalamic (CT) feedback plays an important role in regulating the sensory information that the cortex receives. Within the somatosensory cortex layer VI originates the feedback to the ventral posterior medial (VPM) nucleus of the thalamus, which in turn receives sensory information from the contralateral whiskers. We examined the physiology and morphology of CT neurons in rat somatosensory cortex, focusing on the physiological characteristics of the monosynaptic inputs that they receive from the thalamus.
View Article and Find Full Text PDFDendritic spines are small protrusions that serve as the principal recipients of excitatory inputs onto cortical pyramidal cells. Alterations in spine and filopodia density and morphology correlate with both developmental maturity and changes in synaptic strength. In order to better understand the developmental profile of dendritic protrusion (dendritic spines + filopodia) morphology and density over the animal's first postnatal year, we used the Golgi staining technique to label neurons and their dendritic protrusions in mice.
View Article and Find Full Text PDFAbnormal development of the cerebellum is often associated with disorders of movement, postural control, and motor learning. Rodent models are widely used to study normal and abnormal cerebellar development and have revealed the roles of many important genetic and environmental factors. In the present report we describe the prevalence and cytoarchitecture of molecular-layer heterotopia, a malformation of neuronal migration, in the cerebellar vermis of C57BL/6 mice and closely-related strains.
View Article and Find Full Text PDFIn rodents, the barrel cortex is a specialized area within the somatosensory cortex that processes signals from the mystacial whiskers. We investigated the normal development of myelination in the barrel cortex of mice, as well as the effects of sensory deprivation on this pattern. Deprivation was achieved by trimming the whiskers on one side of the face every other day from birth.
View Article and Find Full Text PDF