Publications by authors named "Joshua Benne"

Disease resistance genes in livestock provide health benefits to animals and opportunities for farmers to meet the growing demand for affordable, high-quality protein. Previously, researchers used gene editing to modify the porcine CD163 gene and demonstrated resistance to a harmful virus that causes porcine reproductive and respiratory syndrome (PRRS). To maximize potential benefits, this disease resistance trait needs to be present in commercially relevant breeding populations for multiplication and distribution of pigs.

View Article and Find Full Text PDF

Senecavirus A (SVA) is a cause of vesicular disease in pigs, and infection rates are rising within the swine industry. Recently, anthrax toxin receptor 1 (ANTXR1) was revealed as the receptor for SVA in human cells. Herein, the role of ANTXR1 as a receptor for SVA in pigs was investigated by CRISPR/Cas9 genome editing.

View Article and Find Full Text PDF

Phenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments.

View Article and Find Full Text PDF

To improve efficiency of somatic cell nuclear transfer (SCNT), it is necessary to modify differentiated donor cells to become more amendable for reprogramming by the oocyte cytoplasm. A key feature that distinguishes somatic/differentiated cells from embryonic/undifferentiated cells is cellular metabolism, with somatic cells using oxidative phosphorylation (OXPHOS) while embryonic cells utilize glycolysis. Inducing metabolic reprogramming in donor cells could improve SCNT efficiency by priming cells to become more embryonic in nature before SCNT hypoxia inducible factor 1-α (HIF1-α), a transcription factor that allows for cell survival in low oxygen, promotes a metabolic switch from OXPHOS to glycolysis.

View Article and Find Full Text PDF

Hypotaurine (HT) is a routine component of porcine embryo culture medium, functioning as an antioxidant, but its requirement may be diminished as most embryo culture systems now use 5% O instead of atmospheric (20%) O . Our objective was to determine the effects of removing HT from the culture medium on porcine preimplantation embryo development. Embryos cultured in 20% O without HT had decreased blastocyst development compared to culture with HT or in 5% O with or without HT.

View Article and Find Full Text PDF
Article Synopsis
  • The embryo undergoes two main cell lineage decisions during preimplantation development: the initial split into trophectoderm (TE) and inner cell mass (ICM), followed by the differentiation of ICM into hypoblast and epiblast.
  • A study investigated the function of NANOG in bovine embryos using CRISPR-Cas9 to create a functional deletion of NANOG at the zygote stage.
  • The findings revealed that NANOG is crucial for the formation and maintenance of the pluripotent epiblast, while not affecting the TE, as NANOG-null embryos primarily composed of hypoblast cells exhibited reduced expression of key epiblast markers.
View Article and Find Full Text PDF

Conceptus development and elongation is required for successful pregnancy establishment in ruminants and is coincident with the production of interferon τ (IFNT) and prostaglandins (PGs). In both the conceptus trophectoderm and endometrium, PGs are primarily synthesized through a prostaglandin-endoperoxide synthase 2 (PTGS2) pathway and modify endometrial gene expression and thus histotroph composition in the uterine lumen to promote conceptus growth and survival. Chemical inhibition of PG production by both the endometrium and the conceptus prevented elongation in sheep.

View Article and Find Full Text PDF

Pig conceptuses secrete estrogens (E2), interleukin 1 beta 2 (IL1B2), and prostaglandins (PGs) during the period of rapid trophoblast elongation and establishment of pregnancy. Previous studies established that IL1B2 is essential for rapid conceptus elongation, whereas E2 is not essential for conceptus elongation or early maintenance of the corpora lutea. The objective of the present study was to determine if conceptus expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and release of PG are important for early development and establishment of pregnancy.

View Article and Find Full Text PDF
Article Synopsis
  • The study identifies estrogen (E2), produced by the developing embryos in pigs, as a key signal for recognizing pregnancy, particularly between days 11 to 30.
  • Researchers used CRISPR/Cas9 to create embryos lacking the enzyme aromatase (CYP19A1), which is essential for E2 production, and found that these embryos still initiated some developmental processes but led to pregnancy loss.
  • The findings indicate that while E2 is not crucial for early embryo development and maintenance of ovarian structures, it is vital for sustaining pregnancy beyond 30 days.
View Article and Find Full Text PDF

Genetically engineered pigs serve as excellent biomedical and agricultural models. To date, the most reliable way to generate genetically engineered pigs is via somatic cell nuclear transfer (SCNT), however, the efficiency of cloning in pigs is low (1-3%). Somatic cells such as fibroblasts frequently used in nuclear transfer utilize the tricarboxylic acid cycle and mitochondrial oxidative phosphorylation for efficient energy production.

View Article and Find Full Text PDF

Production of Cas9 mRNA in vitro typically requires the addition of a 5´ cap and 3´ polyadenylation. A plasmid was constructed that harbored the T7 promoter followed by the EMCV IRES and a Cas9 coding region. We hypothesized that the use of the metastasis associated lung adenocarcinoma transcript 1 (Malat1) triplex structure downstream of an IRES/Cas9 expression cassette would make polyadenylation of in vitro produced mRNA unnecessary.

View Article and Find Full Text PDF

Genetically engineered pigs are often created with a targeting vector that contains a loxP flanked selectable marker like neomycin. The Cre-loxP recombinase system can be used to remove the selectable marker gene from the resulting offspring or cell line. Here is described a new method to remove a loxP flanked neomycin cassette by direct zygote injection of an mRNA encoding Cre recombinase.

View Article and Find Full Text PDF

Somatic cell nuclear transfer is a valuable technique for the generation of genetically engineered animals, however, the efficiency of cloning in mammalian species is low (1-3%). Differentiated somatic cells commonly used in nuclear transfer utilize the tricarboxylic acid cycle and cellular respiration for energy production. Comparatively the metabolism of somatic cells contrasts that of the cells within the early embryos which predominately use glycolysis.

View Article and Find Full Text PDF

Conceptus expansion throughout the uterus of mammalian species with a noninvasive epitheliochorial type of placentation is critical establishing an adequate uterine surface area for nutrient support during gestation. Pig conceptuses undergo a unique rapid morphological transformation to elongate into filamentous threads within 1 h, which provides the uterine surface to support development and maintain functional corpora lutea through the production of estrogen. Conceptus production of a unique interleukin 1β, IL1B2, temporally increases during the period of trophoblast remodeling during elongation.

View Article and Find Full Text PDF

The CRISPR/Cas9 genome editing tool has increased the efficiency of creating genetically modified pigs for use as biomedical or agricultural models. The objectives were to determine if DNA editing resulted in a delay in development to the blastocyst stage or in a skewing of the sex ratio. Six DNA templates (gBlocks) that were designed to express guide RNAs that target the transmembrane protease, serine S1, member 2 (TMPRSS2) gene were in vitro transcribed.

View Article and Find Full Text PDF

Background: Recent advancements in gene editing techniques have increased in number and utility. These techniques are an attractive alternative to conventional gene targeting methods via homologous recombination due to the ease of use and the high efficiency of gene editing. We have previously produced cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) knockout (KO) pigs in a Minnesota miniature pig genetic background.

View Article and Find Full Text PDF

Targeted modification of the pig genome can be challenging. Recent applications of the CRISPR/Cas9 system hold promise for improving the efficacy of genome editing. When a designed CRISPR/Cas9 system targeting CD163 or CD1D was introduced into somatic cells, it was highly efficient in inducing mutations.

View Article and Find Full Text PDF