Publications by authors named "Joshua B Slee"

Often overlooked in many molecular cell biology laboratory and cell culture courses, suspension cells represent an important aspect of molecular cell biology and cell culture. Most primary cell cultures and cell lines are adherent cells which grow in monolayers on surfaces. However, other cells such as hematopoietic cells, certain tumor cells, and cells of the immune system are suspension cells which are anchorage-independent which grow and divide in solution.

View Article and Find Full Text PDF
Article Synopsis
  • Novel proteins found through specific methods often lack detailed characterization.
  • Antibodies can help with localization studies, but their interactions can complicate results.
  • A GFP-tagged construct of TMEM184A was developed to study its role as a heparin receptor and can be used for various experiments on protein behavior and interactions.
View Article and Find Full Text PDF

The effectiveness of endovascular stents is hindered by in-stent restenosis (ISR), a secondary re-obstruction of treated arteries due to unresolved inflammation and activation of smooth muscle cells in the arterial wall. We previously demonstrated that immobilized CD47, a ubiquitously expressed transmembrane protein with an established role in immune evasion, can confer biocompatibility when appended to polymeric surfaces. In present studies, we test the hypothesis that CD47 immobilized onto metallic surfaces of stents can effectively inhibit the inflammatory response thus mitigating ISR.

View Article and Find Full Text PDF

Vascular cell responses to exogenous heparin have been documented to include decreased vascular smooth muscle cell proliferation following decreased ERK pathway signaling. However, the molecular mechanism(s) by which heparin interacts with cells to induce those responses has remained unclear. Previously characterized monoclonal antibodies that block heparin binding to vascular cells have been found to mimic heparin effects.

View Article and Find Full Text PDF

Despite the large number of heparin and heparan sulfate binding proteins, the molecular mechanism(s) by which heparin alters vascular cell physiology is not well understood. Studies with vascular smooth muscle cells (VSMCs) indicate a role for induction of dual specificity phosphatase 1 (DUSP1) that decreases ERK activity and results in decreased cell proliferation, which depends on specific heparin binding. The hypothesis that unfractionated heparin functions to decrease inflammatory signal transduction in endothelial cells (ECs) through heparin-induced expression of DUSP1 was tested.

View Article and Find Full Text PDF

Tissue contacting surfaces of medical devices initiate a host inflammatory response, characterized by adsorption of blood proteins and inflammatory cells triggering the release of cytokines, reactive oxygen species (ROS) and reactive nitrogen species (RNS), in an attempt to clear or isolate the foreign object from the body. This normal host response contributes to device-associated pathophysiology and addressing device biocompatibility remains an unmet need. Although widespread attempts have been made to render the device surfaces unreactive, the establishment of a completely bioinert coating has been untenable and demonstrates the need to develop strategies based upon the molecular mechanisms that define the interaction between host cells and synthetic surfaces.

View Article and Find Full Text PDF

The foreign body reaction occurs when a synthetic surface is introduced to the body. It is characterized by adsorption of blood proteins and the subsequent attachment and activation of platelets, monocyte/macrophage adhesion, and inflammatory cell signaling events, leading to post-procedural complications. The Chandler Loop Apparatus is an experimental system that allows researchers to study the molecular and cellular interactions that occur when large volumes of blood are perfused over polymeric conduits.

View Article and Find Full Text PDF

Published data provide strong evidence that heparin treatment of proliferating vascular smooth muscle cells results in decreased signaling through the ERK pathway and decreases in cell proliferation. In addition, these changes have been shown to be mimicked by antibodies that block heparin binding to the cell surface. Here, we provide evidence that the activity of protein kinase G is required for these heparin effects.

View Article and Find Full Text PDF

Vascular endothelial cells and their actin microfilaments align in the direction of fluid shear stress (FSS) in vitro and in vivo. To determine whether cofilin, an actin severing protein, is required in this process, the levels of phospho-cofilin (serine-3) were evaluated in cells exposed to FSS. Phospho-cofilin levels decreased in the cytoplasm and increased in the nucleus during FSS exposure.

View Article and Find Full Text PDF

The prevalence of exercise-induced bronchoconstriction is reported to be high among recreational and elite athletes, yet diagnosis is often symptom-based. Indirect challenges such as the laboratory exercise challenge provide objective criteria for proper diagnosis and treatment. However, a standardized protocol using appropriate exercise intensity, duration, and dry air inhalation is often not implemented, and thus a false-negative test may result.

View Article and Find Full Text PDF