Lipopolysaccharide (LPS) is vital for maintaining the outer membrane barrier in Gram-negative bacteria. LPS is also frequently obtained in complex with the inner membrane proteins after detergent purification. The question of whether or not LPS binding to inner membrane proteins not involved in outer membrane biogenesis reflects native lipid environments remains unclear.
View Article and Find Full Text PDFLipopolysaccharide (LPS) transport to the outer membrane (OM) is a crucial step in the biogenesis of microbial surface defenses. Although many features of the translocation mechanism have been elucidated, molecular details of LPS insertion via the LPS transport (Lpt) OM protein LptDE remain elusive. Here, we integrate native MS with hydrogen-deuterium exchange MS and molecular dynamics simulations to investigate the influence of substrate and peptide binding on the conformational dynamics of LptDE.
View Article and Find Full Text PDFResponsive hydrogels that undergo controlled shape changes in response to a range of stimuli are of interest for microscale soft robotic and biomedical devices. However, these applications require fabrication methods capable of preparing complex, heterogeneous materials. Here we report a new approach for making patterned, multi-material and multi-responsive hydrogels, on a micrometre to millimetre scale.
View Article and Find Full Text PDFTranslocation of lipid II across the cytoplasmic membrane is essential in peptidoglycan biogenesis. Although most steps are understood, identifying the lipid II flippase has yielded conflicting results, and the lipid II binding properties of two candidate flippases-MurJ and FtsW-remain largely unknown. Here we apply native mass spectrometry to both proteins and characterize lipid II binding.
View Article and Find Full Text PDF