Plasmonic nanoparticles play an important role in applications for chemical sensing, catalysis, medicine, and biosensing. The localized surface plasmon resonance (LSPR) of a nanoparticle is determined by factors such as size, shape, and the local dielectric environment. Here, we report a simple colloidal synthesis method to create core-shell plasmonic nanoparticles with a gold core and a copper oxide (CuO) shell.
View Article and Find Full Text PDFTunable porous composite materials to control metal and metal oxide functionalization, conductivity, pore structure, electrolyte mass transport, mechanical strength, specific surface area, and magneto-responsiveness are critical for a broad range of energy storage, catalysis, and sensing applications. Biotemplated transition metal composite aerogels present a materials approach to address this need. To demonstrate a solution-based synthesis method to develop cobalt and cobalt oxide aerogels for high surface area multifunctional energy storage electrodes, carboxymethyl cellulose nanofibers (CNF) and alginate biopolymers were mixed to form hydrogels to serve as biotemplates for cobalt nanoparticle formation via the chemical reduction of cobalt salt solutions.
View Article and Find Full Text PDFPowder vaporization is a common method for the generation of large-area, single-crystal, two-dimensional molybdenum disulfide. While commonly employed as a growth method, the fundamental molecular mechanisms are not well understood. Recent ab initio analyses have shown that molybdenum oxysulfide rings play a key role in the sulfurization of molybdenum trioxide from elemental sulfur.
View Article and Find Full Text PDFSulfurization of molybdenum trioxide by elemental sulfur through powder vaporization is a common method used for growth of molybdenum disulfide. Optimization of complexes between sulfur allotropes and molybdenum species using Density Functional Theory has revealed the molecular mechanism of sulfurization. Complete sulfurization of molybdenum trioxide to molybdenum disulfide requires at least three sets of nucleophilic addition-elimination reactions that generate the experimentally observed molybdenum oxysulfide intermediates along the reaction pathway.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2018
Micro- and nanostructured surfaces are known to induce anti-wetting and self-cleaning properties. However, traditional formation of these structures is difficult and requires high-resolution micro- and nanofabrication methods. Here, we demonstrate a facile method for the formation of superhydrophobic self-cleaning surfaces by laser pulse heating of a carbon nanotube-polymer composite.
View Article and Find Full Text PDFTraditionally, prokaryotic channels are thought to exist as homomultimeric assemblies, while many eukaryotic ion channels form complex heteromultimers. Here we demonstrate that bacterial cyclic nucleotide-gated channels likely form heteromultimers in vivo. Heteromultimer formation is indicated through channel modeling, pull-down assays, and real-time polymerase chain reaction analysis.
View Article and Find Full Text PDFBiochim Biophys Acta
January 2015
Phenotypical analysis of the lipid interacting residues in the closed state of the mechanosensitive channel of small conductance (MscS) from Escherichia coli (E. coli) has previously shown that these residues are critical for channel function. In the closed state, mutation of individual hydrophobic lipid lining residues to alanine, thus reducing the hydrophobicity, resulted in phenotypic changes that were observable using in vivo assays.
View Article and Find Full Text PDFStainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important.
View Article and Find Full Text PDFPhotolithographic patterning methods provide a versatile way of functionalizing substrates for biological and biosensing applications. Here, we provide an overview of recent developments in photopatterning for biological applications. This review emphasizes photopatterned self-assembled monolayers (SAMs) since they have distinguished themselves as a facile means to functionalize a variety of substrates from oxides to noble metals, while also providing precise control over the surface chemistry.
View Article and Find Full Text PDFThis work investigates self-assembled monolayers that were formed from a glycol-terminated thiol monomer and were patterned using photoinduced monolayer desorption. Utilizing direct-write photolithography provided a facile means to generate complex protein patterns containing gradients and punctate regions. The ablated glycol monolayers were characterized using scanning probe microscopy, which allowed us to observe differences in the nanomechanical properties between the patterned and nonpatterned regions of the substrate.
View Article and Find Full Text PDFBacterial cyclic nucleotide gated (bCNG) channels are generally a nonmechanosensitive subset of the mechanosensitive channel of small conductance (MscS) superfamily. bCNG channels are composed of an MscS channel domain, a linking domain, and a cyclic nucleotide binding domain. Among bCNG channels, the channel domain of Ss-bCNGa, a bCNG channel from Synechocystis sp.
View Article and Find Full Text PDFPatterned supported lipid bilayers (SLBs) provide a model system for studying fluid lipid bilayers and transmembrane proteins in an array format. SLB arrays self-assemble on patterned self-assembled monolayers (SAMs) consisting of hexadecanethiol and glycol-terminated regions. While the mechanism of SLB formation on glass has been studied extensively, the formation of SLBs on other substrates is not necessarily well understood.
View Article and Find Full Text PDFA family of many talents: The mechanosensitive channel of small conductance (MscS) superfamily of ion channels is composed of 15 unique subfamilies. Many of these subfamilies are predicted to be nonmechanosensitive and to have evolved to play critical roles in bacterial signal transduction.
View Article and Find Full Text PDFIntegr Biol (Camb)
September 2012
Here we used patterned self-assembled monolayer (SAM) chemistry to explore the role of spatial confinement on the growth and proliferation of a developing neuron. Despite extensive previous work on the molecular mechanisms controlling these processes, classical biological approaches have not been able to clearly distinguish whether differentiation is predetermined or environmentally determined.
View Article and Find Full Text PDFSelf-assembled monolayers (SAMs) are widely used to confine proteins and cells to a pattern to study cellular processes and behavior. To fully explore some of these phenomena, it is necessary to control cell growth and confinement for several weeks. Here, we present a simple method by which protein and cellular confinement to a pattern can be maintained for more than 35 days.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2012
We have recently identified and characterized the bacterial cyclic nucleotide gated (bCNG) subfamily of the larger mechanosensitive channel of small conductance (MscS) superfamily of ion channels. The channel domain of bCNG channels exhibits significant sequence homology to the mechanosensitive subfamily of MscS in the regions that have previously been used as a hallmark for channels that gate in response to mechanical stress. However, we have previously demonstrated that three of these channels are unable to rescue Escherichiacoli from osmotic downshock.
View Article and Find Full Text PDFMicrocontact printing provides a rapid, highly reproducible method for the creation of well-defined patterned substrates.(1) While microcontact printing can be employed to directly print a large number of molecules, including proteins,(2) DNA,(3) and silanes,(4) the formation of self-assembled monolayers (SAMs) from long chain alkane thiols on gold provides a simple way to confine proteins and cells to specific patterns containing adhesive and resistant regions. This confinement can be used to control cell morphology and is useful for examining a variety of questions in protein and cell biology.
View Article and Find Full Text PDFSupported lipid bilayers (SLBs) formed on many different substrates have been widely used in the study of lipid bilayers. However, most SLBs suffer from inhomogeneities due to interactions between the lipid bilayer and the substrate. In order to avoid this problem, we have used microcontact printing to create patterned SLBs on top of ethylene-glycol-terminated self-assembled monolayers (SAMs).
View Article and Find Full Text PDFMutations that alter the phenotypic behavior of the Escherichia coli mechanosensitive channel of small conductance (MscS) have been identified; however, most of these residues play critical roles in the transition between the closed and open states of the channel and are not directly involved in lipid interactions that transduce the tension response. In this study, we use molecular dynamic simulations to predict critical lipid interacting residues in the closed state of MscS. The physiological role of these residues was then investigated by performing osmotic downshock assays on MscS mutants where the lipid interacting residues were mutated to alanine.
View Article and Find Full Text PDFChem Commun (Camb)
January 2011
Patterned self-assembled monolayers (SAMs) have been widely utilized for the study of cellular growth and behavior. While microcontact printing is a straightforward method of producing patterned substrates, the process is time consuming and requires the use of many techniques and specialized equipment. Here we present a method by which patterned substrates can be reused up to 15 times, saving both time and valuable resources.
View Article and Find Full Text PDFThe relationship between sequence, structure, and function is examined by comparing nineteen cyclic nucleotide monophosphate binding domains of known structure from six different functional families. Comparisons are made by structure and sequence alignment and through the generation of 3610 homology models. This analysis suggests there are only weak relationships between functional families, sequence, and/or structure.
View Article and Find Full Text PDFStudies of bacterial ion channels have provided significant insights into the structure-function relationships of mechanosensitive and voltage-gated ion channels. However, to date, very few bacterial channels that respond to small molecules have been identified, cloned, and characterized. Here, we use bioinformatics to identify a novel family of bacterial cyclic nucleotide-gated (bCNG) ion channels containing a channel domain related by sequence homology to the mechanosensitive channel of small conductance (MscS).
View Article and Find Full Text PDFHere we describe new methodology that allows for direct microcontact printing of octadecyltrichlorosilane onto glass coverslips followed by backfilling with an ethylene glycol terminated trichloroalkane silane; this produces patterns with regions that promote and prevent protein adsorption and allow for control of cell growth.
View Article and Find Full Text PDFThe structure of the C-terminal domain of the mechanosensitive channel of large conductance (MscL) has generated significant controversy. As a result, several structures have been proposed for this region: the original crystal structure (1MSL) of the Mycobacterium tuberculosis homolog (Tb), a model of the Escherichia coli homolog, and, most recently, a revised crystal structure of Tb-MscL (2OAR). To understand which of these structures represents a physiological conformation, we measured the impact of mutations to the C-terminal domain on the thermal stability of Tb-MscL using circular dichroism and performed molecular dynamics simulations of the original and the revised crystal structures of Tb-MscL.
View Article and Find Full Text PDF