Although therapeutic options for patients with advanced renal cell carcinoma (RCC) have increased in the past decade, no biomarkers are yet available for patient stratification or evaluation of therapy resistance. Given the dynamic and heterogeneous nature of clear cell RCC (ccRCC), tumor biopsies provide limited clinical utility, but liquid biopsies could overcome these limitations. Prior liquid biopsy approaches have lacked clinically relevant detection rates for patients with ccRCC.
View Article and Find Full Text PDFBackground: The treatment of non-localized prostate cancer involves androgen deprivation (AD) therapy which results in tumor regression. Apoptosis has been implicated in the tumor response to AD, but constitutes a small fraction of the total tumor at any time. Cellular senescence is a response to sub-lethal stress in which cells are persistently growth arrested and develop distinct morphological and biochemical characteristics.
View Article and Find Full Text PDFBiologically, light including ultraviolet (UV) radiation is vital for life. However, UV exposure does not come without risk, as it is a major factor in the development of skin cancer. Natural protections against UV damage may have been affected by lifestyle changes over the past century, including changes in our sun exposure due to working environments, and the use of sunscreens.
View Article and Find Full Text PDFCellular senescence is a response to nonlethal stress that results in persistent cytostasis with a distinct morphological and biochemical phenotype. The senescence phenotype, detected in tumors through the expression of mRNA and protein markers, can be generated in cancer cells lacking functional p53 and retinoblastoma protein. Current research suggests that therapy-induced senescence (TIS) represents a novel functional target that may improve cancer therapy.
View Article and Find Full Text PDFCellular senescence is a persistently growth-arrested phenotype in normal and transformed cells induced by noncytotoxic stress. Cytostasis as a method of cancer treatment has recently generated significant interest. Research into the induction of cellular senescence as cancer therapy has been hindered by a lack of compounds that efficiently induce this response.
View Article and Find Full Text PDFLoss of imprinting (LOI) is an epigenetic alteration involving loss of parental origin-specific expression at normally imprinted genes. A LOI for Igf2, a paracrine growth factor, is important in cancer progression. Epigenetic modifications may be altered by environmental factors.
View Article and Find Full Text PDFBackground: Folate and methyl-group deficiency has been linked to prostate cancer susceptibility, yet the mechanisms underlying these observations are incompletely understood. The region of the genome containing the imprinted genes insulin-like growth factor 2 (Igf2) and H19, both of which display oncogenic functions, may be particularly sensitive to environmental influences.
Methods: To determine whether a methyl-deficient diet impacts epigenetic controls at the Igf2-H19 locus, we placed C57BL/6 mice containing a polymorphism at the imprinted Igf2-H19 locus on a choline and methionine deficient (CMD) diet.
Classic mechanisms of tumor response to chemotherapy include apoptosis and mitotic catastrophe. Recent studies have suggested that cellular senescence, a terminal proliferation arrest seen in vitro, may be invoked during the exposure of cancer cells to chemotherapeutic agents. To identify markers associated specifically with the cellular senescence phenotype, we utilized expression data from cDNA microarray experiments identifying transcripts whose expression levels increased as human prostate epithelial cells progressed to senescence.
View Article and Find Full Text PDFThe hypothalamic peptide GnRH is the primary neuroendocrine signal regulating pituitary LH in females. The neuropeptide galanin is cosecreted with GnRH from hypothalamic neurons, and in vitro studies have demonstrated that galanin can act at the level of the pituitary to directly stimulate LH secretion and also augment GnRH-stimulated LH secretion. Several lines of evidence have suggested that the hypophysiotropic effects of galanin are important for the generation of preovulatory LH surges.
View Article and Find Full Text PDFGalanin is a 29-amino-acid peptide that colocalizes with GnRH in hypothalamic neurons. High concentrations of galanin are present in portal vessel blood of both male and female rats, and galanin receptors are present on gonadotropes in both sexes. Results from studies of female rats indicate that galanin acts at the level of the pituitary to directly stimulate LH secretion and also to enhance GnRH-stimulated LH secretion.
View Article and Find Full Text PDF