Publications by authors named "Joshua A Ainsley"

Acquiring the gene expression profiles of specific neuronal cell-types is important for understanding their molecular identities. Genome-wide gene expression profiles of genetically defined cell-types can be acquired by collecting and sequencing mRNA that is bound to epitope-tagged ribosomes (TRAP; translating ribosome affinity purification). Here, we introduce a transgenic mouse model that combines the TRAP technique with the tetracycline transactivator (tTA) system by expressing EGFP-tagged ribosomal protein L10a (EGFP-L10a) under control of the tetracycline response element (tetO-TRAP).

View Article and Find Full Text PDF

The subcellular localization and translation of messenger RNA (mRNA) supports functional differentiation between cellular compartments. In neuronal dendrites, local translation of mRNA provides a rapid and specific mechanism for synaptic plasticity and memory formation, and might be involved in the pathophysiology of certain brain disorders. Despite the importance of dendritic mRNA translation, little is known about which mRNAs can be translated in dendrites in vivo and when their translation occurs.

View Article and Find Full Text PDF

Genome-wide studies of circadian transcription or mRNA translation have been hindered by the presence of heterogeneous cell populations in complex tissues such as the nervous system. We describe here the use of a Drosophila cell-specific translational profiling approach to document the rhythmic "translatome" of neural clock cells for the first time in any organism. Unexpectedly, translation of most clock-regulated transcripts--as assayed by mRNA ribosome association--occurs at one of two predominant circadian phases, midday or mid-night, times of behavioral quiescence; mRNAs encoding similar cellular functions are translated at the same time of day.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) in excess have been implicated in numerous chronic illnesses, including asthma, diabetes, aging, cardiovascular disease, and neurodegenerative illness. However, at lower concentrations, ROS can also serve essential routine functions as part of cellular signal transduction pathways. As products of atmospheric oxygen, ROS-mediated signals can function to coordinate external environmental conditions with growth and development.

View Article and Find Full Text PDF

Controlled organismal growth to an appropriate adult size requires a regulated balance between nutrient resources, feeding behavior and growth rate. Defects can result in decreased survival and/or reproductive capability. Since Drosophila adults do not grow larger after eclosion, timing of feeding cessation during the third and final larval instar is critical to final size.

View Article and Find Full Text PDF

The three Drosophila atypical soluble guanylyl cyclases, Gyc-89Da, Gyc-89Db, and Gyc-88E, have been proposed to act as oxygen detectors mediating behavioral responses to hypoxia. Drosophila larvae mutant in any of these subunits were defective in their hypoxia escape response-a rapid cessation of feeding and withdrawal from their food. This response required cGMP and the cyclic nucleotide-gated ion channel, cng, but did not appear to be dependent on either of the cGMP-dependent protein kinases, dg1 and dg2.

View Article and Find Full Text PDF

Growth of multicellular organisms proceeds through a series of precisely timed developmental events requiring coordination between gene expression, behavioral changes, and environmental conditions. In Drosophila melanogaster larvae, the essential midthird instar transition from foraging (feeding) to wandering (non-feeding) behavior occurs prior to pupariation and metamorphosis. The timing of this key transition is coordinated with larval growth and size, but physiological mechanisms regulating this process are poorly understood.

View Article and Find Full Text PDF

Coordination of rhythmic locomotion depends upon a precisely balanced interplay between central and peripheral control mechanisms. Although poorly understood, peripheral proprioceptive mechanosensory input is thought to provide information about body position for moment-to-moment modifications of central mechanisms mediating rhythmic motor output. Pickpocket1 (PPK1) is a Drosophila subunit of the epithelial sodium channel (ENaC) family displaying limited expression in multiple dendritic (md) sensory neurons tiling the larval body wall and a small number of bipolar neurons in the upper brain.

View Article and Find Full Text PDF