Publications by authors named "Josh Tycko"

Determining the phenotypic effects of single nucleotide variants is critical for understanding the genome and interpreting clinical sequencing results. Base editors, including diversifying base editors that create C>N mutations, are potent tools for installing point mutations in mammalian genomes and studying their effect on cellular function. Numerous base editor options are available for such studies, but little information exists on how the composition of the editor (deaminase, recruitment method, and fusion architecture) affects editing.

View Article and Find Full Text PDF

Transcriptional effectors are protein domains known to activate or repress gene expression; however, a systematic understanding of which effector domains regulate transcription across genomic, cell type and DNA-binding domain (DBD) contexts is lacking. Here we develop dCas9-mediated high-throughput recruitment (HT-recruit), a pooled screening method for quantifying effector function at endogenous target genes and test effector function for a library containing 5,092 nuclear protein Pfam domains across varied contexts. We also map context dependencies of effectors drawn from unannotated protein regions using a larger library tiling chromatin regulators and transcription factors.

View Article and Find Full Text PDF

Gene therapy holds great therapeutic potential. Yet, controlling cargo expression in single cells is limited due to the variability of delivery methods. We implement an incoherent feedforward loop based on proteolytic cleavage of CRISPR-Cas activation or inhibition systems to reduce gene expression variability against the variability of vector delivery.

View Article and Find Full Text PDF
Article Synopsis
  • Regulatory proteins use specific repressor domains (RDs) to control gene expression, but how variations in their sequences affect this function is not well understood.
  • Researchers created a dataset from 115,000 variant sequences to study repressor activity in human cells, identifying clinical variants that alter repression functions, including those linked to certain genetic disorders.
  • They developed a deep learning model called TENet to predict repressor activity based on sequence and structure, aiming to enhance the design of synthetic regulatory proteins and improve how we prioritize functional variants in future research.
View Article and Find Full Text PDF

CRISPR-based transcriptional activation (CRISPRa) has extensive research and clinical potential. Here, we show that commonly used CRISPRa systems can exhibit pronounced cytotoxicity. We demonstrate the toxicity of published and new CRISPRa vectors expressing the activation domains (ADs) of the transcription factors p65 and HSF1, components of the synergistic activation mediator (SAM) CRISPRa system.

View Article and Find Full Text PDF

The ENCODE Consortium's efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.

View Article and Find Full Text PDF

Skin color, one of the most diverse human traits, is determined by the quantity, type, and distribution of melanin. In this study, we leveraged the light-scattering properties of melanin to conduct a genome-wide screen for regulators of melanogenesis. We identified 169 functionally diverse genes that converge on melanosome biogenesis, endosomal transport, and gene regulation, of which 135 represented previously unknown associations with pigmentation.

View Article and Find Full Text PDF

Despite growing knowledge of the functions of individual human transcriptional effector domains, much less is understood about how multiple effector domains within the same protein combine to regulate gene expression. Here, we measure transcriptional activity for 8,400 effector domain combinations by recruiting them to reporter genes in human cells. In our assay, weak and moderate activation domains synergize to drive strong gene expression, whereas combining strong activators often results in weaker activation.

View Article and Find Full Text PDF

Viruses encode transcriptional regulatory proteins critical for controlling viral and host gene expression. Given their multifunctional nature and high sequence divergence, it is unclear which viral proteins can affect transcription and which specific sequences contribute to this function. Using a high-throughput assay, we measured the transcriptional regulatory potential of over 60,000 protein tiles across ∼1,500 proteins from 11 coronaviruses and all nine human herpesviruses.

View Article and Find Full Text PDF

Detecting and mitigating off-target activity is critical to the practical application of CRISPR-mediated genome and epigenome editing. While numerous methods have been developed to map Cas9 binding specificity genome-wide, they are generally time-consuming and/or expensive, and not applicable to catalytically dead CRISPR enzymes. We have developed CasKAS, a rapid, inexpensive, and facile assay for identifying off-target CRISPR enzyme binding and cleavage by chemically mapping the unwound single-stranded DNA structures formed upon binding of a sgRNA-loaded Cas9 protein.

View Article and Find Full Text PDF

Human gene expression is regulated by more than 2,000 transcription factors and chromatin regulators. Effector domains within these proteins can activate or repress transcription. However, for many of these regulators we do not know what type of effector domains they contain, their location in the protein, their activation and repression strengths, and the sequences that are necessary for their functions.

View Article and Find Full Text PDF

To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos.

View Article and Find Full Text PDF

CRISPR gene drives could revolutionize the control of infectious diseases by accelerating the spread of engineered traits that limit parasite transmission in wild populations. Gene drive technology in mollusks has received little attention despite the role of freshwater snails as hosts of parasitic flukes causing 200 million annual cases of schistosomiasis. A successful drive in snails must overcome self-fertilization, a common feature of host snails which could prevents a drive's spread.

View Article and Find Full Text PDF

Large serine recombinases (LSRs) are DNA integrases that facilitate the site-specific integration of mobile genetic elements into bacterial genomes. Only a few LSRs, such as Bxb1 and PhiC31, have been characterized to date, with limited efficiency as tools for DNA integration in human cells. In this study, we developed a computational approach to identify thousands of LSRs and their DNA attachment sites, expanding known LSR diversity by >100-fold and enabling the prediction of their insertion site specificities.

View Article and Find Full Text PDF

Infants and older adults are especially vulnerable to infection by respiratory syncytial virus (RSV), which can cause significant illness and irreparable damage to the lower respiratory tract and for which an effective vaccine is not readily available. Palivizumab, a recombinant monoclonal antibody (mAb), is an approved therapeutic for RSV infection for use in high-risk infants only. Due to several logistical issues, including cost of goods and scale-up limitations, palivizumab is not approved for other populations that are vulnerable to severe RSV infections, such as older adults.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new method called HT-recruit to identify which proteins in the nucleus affect gene transcription by recruiting them to a reporter and measuring their effects through sequencing.
  • The research reveals connections between the repressor functions of specific protein domains, such as KRAB and Homeodomain, and their evolutionary age or genetic organization.
  • The findings also include new activator domains and a large resource of 600 human proteins linked to gene regulation, showcasing a scalable approach to understanding protein functions.
View Article and Find Full Text PDF
Article Synopsis
  • Schistosomiasis affects over 200 million people globally, making it a significant neglected tropical disease, with mass drug administration being an inadequate long-term solution due to reinfection risks.
  • Targeting the disease's snail hosts through gene drive technology could potentially enhance schistosome resistance traits and lower disease transmission rates, but implementation poses various interdisciplinary challenges.
  • This Review Article discusses strategies for developing gene drives responsibly, measuring their impact on schistosomiasis control, and ensuring governance, emphasizing the need for collaboration within the global health community.
View Article and Find Full Text PDF

Pooled CRISPR-Cas9 screens are a powerful method for functionally characterizing regulatory elements in the non-coding genome, but off-target effects in these experiments have not been systematically evaluated. Here, we investigate Cas9, dCas9, and CRISPRi/a off-target activity in screens for essential regulatory elements. The sgRNAs with the largest effects in genome-scale screens for essential CTCF loop anchors in K562 cells were not single guide RNAs (sgRNAs) that disrupted gene expression near the on-target CTCF anchor.

View Article and Find Full Text PDF

Considerable effort has been devoted to developing a comprehensive understanding of CRISPR nuclease specificity. predictions and multiple genome-wide cellular and biochemical approaches have revealed a basic understanding of the Cas9 specificity profile. However, none of these approaches has delivered a model that allows accurate prediction of a CRISPR nuclease's ability to cleave a site based entirely on the sequence of the guide RNA (gRNA) and the target.

View Article and Find Full Text PDF
Article Synopsis
  • The original HTML version of the article had several incorrect affiliations listed for authors Josh Tycko and Luis A. Barrera.
  • The affiliations were incorrectly documented in the HTML, whereas the PDF version of the article had the correct information from the start.
  • Nicholas C. Huston's affiliation was also omitted in the original HTML version but has now been corrected.
View Article and Find Full Text PDF

Therapeutic genome editing with Staphylococcus aureus Cas9 (SaCas9) requires a rigorous understanding of its potential off-target activity in the human genome. Here we report a high-throughput screening approach to measure SaCas9 genome editing variation in human cells across a large repertoire of 88,692 single guide RNAs (sgRNAs) paired with matched or mismatched target sites in a synthetic cassette. We incorporate randomized barcodes that enable whitelisting of correctly synthesized molecules for further downstream analysis, in order to circumvent the limitation of oligonucleotide synthesis errors.

View Article and Find Full Text PDF

The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery.

View Article and Find Full Text PDF

The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells creates subtype-specific enhancer-promoter interactions, specifically at regions of shared DNA accessibility.

View Article and Find Full Text PDF

Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing mutations. Although the Cas9 protein has been shown to bind and cleave DNA at off-target sites, the field of Cas9 specificity is rapidly progressing, with marked improvements in guide RNA selection, protein and guide engineering, novel enzymes, and off-target detection methods.

View Article and Find Full Text PDF

We report a toolbox for exploring the modular tuning of genetic circuits, which has been specifically optimized for widespread deployment in STEM environments through a combination of bacterial strain engineering and distributable hardware development. The transfer functions of 16 genetic switches, programmed to express a GFP reporter under the regulation of the (acyl-homoserine lactone) AHL-sensitive luxR transcriptional activator, can be parametrically tuned by adjusting high/low degrees of transcriptional, translational, and post-translational processing. Strains were optimized to facilitate daily large-scale preparation and reliable performance at room temperature in order to eliminate the need for temperature controlled apparatuses, which are both cost-limiting and space-constraining.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjudqd2javuurhpcfaf7j546p67cq5p7l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once