Publications by authors named "Josh L Morgan"

Automated image acquisition can significantly improve the throughput of serial section scanning electron microscopy (ssSEM). However, image quality can vary from image to image depending on autofocusing and beam stigmation. Automatically evaluating the quality of images is, therefore, important for efficiently generating high-quality serial section scanning electron microscopy (ssSEM) datasets.

View Article and Find Full Text PDF

VGluT3-expressing mouse retinal amacrine cells (VG3s) respond to small-object motion and connect to multiple types of bipolar cells (inputs) and retinal ganglion cells (RGCs, outputs). Because these input and output connections are intermixed on the same dendrites, making sense of VG3 circuitry requires comparing the distribution of synapses across their arbors to the subcellular flow of signals. Here, we combine subcellular calcium imaging and electron microscopic connectomic reconstruction to analyze how VG3s integrate and transmit visual information.

View Article and Find Full Text PDF

Retinal ganglion cell (RGC) degeneration drives vision loss in blinding conditions. RGC death is often triggered by axon degeneration in the optic nerve. Here, we study the contributions of dynamic and homeostatic Ca levels to RGC death from axon injury.

View Article and Find Full Text PDF

Correlated light and electron microscopy (CLEM) can be used to combine functional and molecular characterizations of neurons with detailed anatomical maps of their synaptic organization. Here we describe a multiresolution approach to CLEM (mrCLEM) that efficiently targets electron microscopy (EM) imaging to optically characterized cells while maintaining optimal tissue preparation for high-throughput EM reconstruction. This approach hinges on the ease with which arrays of sections collected on a solid substrate can be repeatedly imaged at different scales using scanning electron microscopy.

View Article and Find Full Text PDF

In humans, midget and parasol ganglion cells account for most of the input from the eyes to the brain. Yet, how they encode visual information is unknown. Here, we perform large-scale multi-electrode array recordings from retinas of treatment-naive patients who underwent enucleation surgery for choroidal malignant melanomas.

View Article and Find Full Text PDF

One way to assess a neuron's function is to describe all its inputs and outputs. With this goal in mind, we used serial section electron microscopy to map 899 synaptic inputs and 623 outputs in one inhibitory interneuron in a large volume of the mouse visual thalamus. This neuron innervated 256 thalamocortical cells spread across functionally distinct subregions of the visual thalamus.

View Article and Find Full Text PDF

Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-forming vision, yet the rules governing their convergence and divergence remain unknown. Using two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-scale organization based on shared preferences for other visual features. Specifically, at the ∼6 μm scale, clusters of boutons from different axons often showed similar preferences for either one or multiple features, including axis and direction of motion, spatial frequency, and changes in luminance.

View Article and Find Full Text PDF

Imaging as a means of scientific data storage has evolved rapidly over the past century from hand drawings, to photography, to digital images. Only recently can sufficiently large datasets be acquired, stored, and processed such that tissue digitization can actually reveal more than direct observation of tissue. One field where this transformation is occurring is connectomics: the mapping of neural connections in large volumes of digitized brain tissue.

View Article and Find Full Text PDF

Although the core functions and structure of the lateral geniculate nucleus (LGN) are well understood, this core is surrounded by questions about the integration of feedforward and feedback connections, interactions between different channels of information, and how activity dependent development restructures synaptic networks. Our understanding of the organization of the mouse LGN is particularly limited given how important it has become as a model system. Advances in circuit scale electron microscopy (cellular connectomics) have made it possible to reconstruct the synaptic connectivity of hundreds of neurons within in a circuit the size of the mouse LGN.

View Article and Find Full Text PDF

In an attempt to chart parallel sensory streams passing through the visual thalamus, we acquired a 100-trillion-voxel electron microscopy (EM) dataset and identified cohorts of retinal ganglion cell axons (RGCs) that innervated each of a diverse group of postsynaptic thalamocortical neurons (TCs). Tracing branches of these axons revealed the set of TCs innervated by each RGC cohort. Instead of finding separate sensory pathways, we found a single large network that could not be easily subdivided because individual RGCs innervated different kinds of TCs and different kinds of RGCs co-innervated individual TCs.

View Article and Find Full Text PDF
Article Synopsis
  • Automated technologies were used to map the structure of mouse neocortex at a nanometer level, creating a detailed database of various cellular components, including axons, dendrites, and glial cells.
  • The study investigated the physical properties of brain tissue by analyzing the interactions between excitatory axons and dendritic spines, challenging the notion that physical proximity alone predicts synaptic connectivity.
  • This newly created online database offers accessible insights into the complex architecture of the neocortex and facilitates further research driven by data analysis.
View Article and Find Full Text PDF

The automated tape-collecting ultramicrotome (ATUM) makes it possible to collect large numbers of ultrathin sections quickly-the equivalent of a petabyte of high resolution images each day. However, even high throughput image acquisition strategies generate images far more slowly (at present ~1 terabyte per day). We therefore developed WaferMapper, a software package that takes a multi-resolution approach to mapping and imaging select regions within a library of ultrathin sections.

View Article and Find Full Text PDF

Understanding a sensory system implies the ability to predict responses to a variety of inputs from a common model. In the retina, this includes predicting how the integration of signals across visual space shapes the outputs of retinal ganglion cells. Existing models of this process generalize poorly to predict responses to new stimuli.

View Article and Find Full Text PDF

Imaging and reconstruction of developing neurons require cells that are labeled in a way that distinguishes them from their neighbors. This can be achieved with ballistic labeling, which refers to the delivery of a cell label by means of carrier particles (tungsten or gold) propelled from a pressurized gun. Ballistic delivery can reach many dispersed cells in one shot and can deploy a wide variety of cell markers to neurons in diverse preparations.

View Article and Find Full Text PDF

Imaging and reconstruction of developing neurons require cells that are labeled in a way that distinguishes them from their neighbors. This can be achieved with ballistic labeling, which refers to the delivery of a cell label by means of carrier particles (tungsten or gold) propelled from a pressurized gun. Ballistic delivery can reach many dispersed cells in one shot and can deploy a wide variety of cell markers to neurons in diverse preparations.

View Article and Find Full Text PDF

Imaging and reconstruction of developing neurons require cells that are labeled in a way that distinguishes them from their neighbors. This can be achieved with ballistic labeling, which refers to the delivery of a cell label by means of carrier particles (tungsten or gold) propelled from a pressurized gun. Ballistic delivery can reach many dispersed cells in one shot and can deploy a wide variety of cell markers to neurons in diverse preparations.

View Article and Find Full Text PDF

Imaging and reconstruction of developing neurons require cells that are labeled in a way that distinguishes them from their neighbors. This can be achieved with ballistic labeling, which refers to the delivery of a cell label by means of carrier particles (tungsten or gold) propelled from a pressurized gun. Ballistic delivery can reach many dispersed cells in one shot and can deploy a wide variety of cell markers to neurons in diverse preparations.

View Article and Find Full Text PDF

Activity is thought to guide the patterning of synaptic connections in the developing nervous system. Specifically, differences in the activity of converging inputs are thought to cause the elimination of synapses from less active inputs and increase connectivity with more active inputs. Here we present findings that challenge the generality of this notion and offer a new view of the role of activity in synapse development.

View Article and Find Full Text PDF

Sensory neurons with common functions are often nonrandomly arranged and form dendritic territories that show little overlap, or tiling. Repulsive homotypic interactions underlie such patterns in cell organization in invertebrate neurons. It is unclear how dendro-dendritic repulsive interactions can produce a nonrandom distribution of cells and their spatial territories in mammalian retinal horizontal cells, as mature horizontal cell dendrites overlap substantially.

View Article and Find Full Text PDF

Background: Neurons receive excitatory synaptic inputs that are distributed across their dendritic arbors at densities and with spatial patterns that influence their output. How specific synaptic distributions are attained during development is not well understood. The distribution of glutamatergic inputs across the dendritic arbors of mammalian retinal ganglion cells (RGCs) has long been correlated to the spatial receptive field profiles of these neurons.

View Article and Find Full Text PDF

The cellular mechanisms underlying axogenesis and dendritogenesis are not completely understood. The axons and dendrites of retinal bipolar cells, which contact their synaptic partners within specific laminae in the inner and outer retina, provide a good system for exploring these issues. Using transgenic mice expressing enhanced green fluorescent protein (GFP) in a subset of bipolar cells, we determined that axonal and dendritic arbors of these interneurons develop directly from apical and basal processes attached to the outer and inner limiting membranes, respectively.

View Article and Find Full Text PDF

Neuronal function depends on the accurate wiring between pre- and postsynaptic cells. Determining the mechanisms underlying precision in neuronal connectivity is challenging because of the complexity of the nervous system. In diverse parts of the nervous system, regions of synaptic contact are organized into distinct parallel layers, or laminae, that are correlated with distinct functions.

View Article and Find Full Text PDF

We report new fluorescent calcium indicators based on fluo-4. Attachment of a carboxamide or methylenecarboxamide moiety to the BAPTA chelator portion of fluo-4 allowed for the attachment of dextrans, protein-reactive moieties, and biotin. In particular, a high affinity fluo-4 dextran conjugate was prepared and shown to be functional in brain slices.

View Article and Find Full Text PDF