Background: Radiotracer extravasations, caused largely by faulty tracer injections, can occur in up to 23% of F-fluorodeoxyglucose (FDG) PET/CT scans and negatively impact radiological review and tracer quantification. Conventional radiological assessment of extravasation severity on PET has limited performance (e.g.
View Article and Find Full Text PDFExtravasation during radiopharmaceutical injection may occur with a frequency of more than 10%. In these cases, radioactivity remains within tissue and deposits unintended radiation dose. Characterization of extravasations is a necessary step in accurate dosimetry, but a lack of free and publicly available tools hampers routine standardized analysis.
View Article and Find Full Text PDFThe patient benefit from a diagnostic nuclear medicine procedure far outweighs the associated radiation risk. This benefit/risk ratio assumes a properly administered radiopharmaceutical. However, a significant diagnostic radiopharmaceutical extravasation can confound the procedure in many ways.
View Article and Find Full Text PDFExtravasation is a common problem in radiopharmaceutical administration and can result in significant radiation dose to underlying tissue and skin. The resulting radiation effects are rarely studied and should be more fully evaluated to guide patient care and meet regulatory obligations. The purpose of this work was to show that a dedicated radiopharmaceutical injection monitoring system can help clinicians characterize extravasations for calculating tissue and skin doses.
View Article and Find Full Text PDFPurpose: Each year in the United States, approximately 18.5 million nuclear medicine procedures are performed. Various quality control measures are implemented to reduce image errors and improve quantification of radiotracer distribution.
View Article and Find Full Text PDFKinetic analysis of PET data requires continuous measurement of radioactivity in the arterial blood throughout the acquisition time, termed the arterial input function. The arterial input function is used as an input to compartmental modeling, which can be a better predictor of disease progression than SUV measurements from static PET images. Current common methods of measuring blood concentrations include image-derived, population-based, and manual sampling.
View Article and Find Full Text PDF