Publications by authors named "Josh Javor"

We present the coupled oscillator: A new mechanism for signal amplification with widespread application in metrology. We introduce the mechanical theory of this framework and support it by way of simulations. We present a particular implementation of coupled oscillators: A microelectromechanical system (MEMS) that uses one large (∼100mm) N52 magnet coupled magnetically to a small (∼0.

View Article and Find Full Text PDF

Understanding the structural and functional development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) is essential to engineering cardiac tissue that enables pharmaceutical testing, modeling diseases, and designing therapies. Here we use a method not commonly applied to biological materials, small angle x-ray scattering, to characterize the structural development of hiPSC-CMs within three-dimensional engineered tissues during their preliminary stages of maturation. An x-ray scattering experimental method enables the reliable characterization of the cardiomyocyte myofilament spacing with maturation time.

View Article and Find Full Text PDF

Inductive circuits and devices are ubiquitous and important design elements in many applications, such as magnetic drives, galvanometers, magnetic scanners, applying direct current (DC) magnetic fields to systems, radio frequency coils in nuclear magnetic resonance (NMR) systems, and a vast array of other applications. They are widely used to generate both DC and alternating current (AC) magnetic fields. Many of these applications require a rapid step and settling time, turning the DC or AC magnetic field on and off quickly.

View Article and Find Full Text PDF
Article Synopsis
  • A novel cell culture system incorporates both mechanical and optical stimulation through the use of artificial muscles and a micro-electromechanical mirror to control light delivery.
  • This setup allows researchers to finely tune and synchronize mechanical and optical inputs, enhancing the study of cell behavior.
  • It opens up new possibilities for experimental approaches in fields like optogenetics and fluorescent microscopy by adding dynamic mechanical strain as a variable.
View Article and Find Full Text PDF

The Casimir force, a quantum mechanical effect, has been observed in several microelectromechanical system (MEMS) platforms. Due to its extreme sensitivity to the separation of two objects, the Casimir force has been proposed as an excellent avenue for quantum metrology. Practical application, however, is challenging due to attractive forces leading to stiction and device failure, called Casimir pull-in.

View Article and Find Full Text PDF

The structural and functional maturation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is essential for pharmaceutical testing, disease modeling, and ultimately therapeutic use. Multicellular 3D-tissue platforms have improved the functional maturation of hiPSC-CMs, but probing cardiac contractile properties in a 3D environment remains challenging, especially at depth and in live tissues. Using small-angle X-ray scattering (SAXS) imaging, we show that hiPSC-CMs matured and examined in a 3D environment exhibit a periodic spatial arrangement of the myofilament lattice, which has not been previously detected in hiPSC-CMs.

View Article and Find Full Text PDF

Magnetic sensing is present in our everyday interactions with consumer electronics and demonstrates the potential for the measurement of extremely weak biomagnetic fields, such as those of the heart and brain. In this work, we leverage the many benefits of microelectromechanical system (MEMS) devices to fabricate a small, low-power, and inexpensive sensor whose resolution is in the range of biomagnetic fields. At present, biomagnetic fields are measured only by expensive mechanisms such as optical pumping and superconducting quantum interference devices (SQUIDs), suggesting a large opportunity for MEMS technology in this work.

View Article and Find Full Text PDF

The Casimir Effect is a physical manifestation of quantum fluctuations of the electromagnetic vacuum. When two metal plates are placed close together, typically much less than a micron, the long wavelength modes between them are frozen out, giving rise to a net attractive force between the plates, scaling as (or for a spherical-planar geometry) even when they are not electrically charged. In this paper, we observe the Casimir Effect in ambient conditions using a modified capacitive micro-electromechanical system (MEMS) sensor.

View Article and Find Full Text PDF